
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON RELIABILITY 1

ART4SQLi: The ART of SQL Injection
Vulnerability Discovery

Long Zhang , Donghong Zhang, Chenghong Wang, Jing Zhao, and Zhenyu Zhang

Abstract—SQL injection (SQLi) is one of the chief threats to the
security of database-driven Web applications. It can cause seri-
ous security issues such as authentication bypassing, privacy leak-
age, and arbitrary code execution. Dynamic testing techniques are
used in SQLi vulnerability discovery, which de-facto approach is
to maintain a collection of elaborately designed user inputs (aka.
attack payloads) and based on it to compose malicious SQL queries
to Web applications. Such techniques are effective to reveal SQLi
threats before an application is released, thus reducing the cost of
manual analysis, monitoring or postdeployment of other defensive
mechanisms. However, because of the diversity of SQLi attacks
and the difficulty of SQLi discovery, the process to execute pay-
loads can be costly, time-consuming, and even risky. In this paper,
we approach from a test case prioritization perspective to give a
more effective SQLi discovery proposal, which is based on adap-
tive random testing with the aim to successfully trigger an SQLi
within limited attempts. To evaluate our method, we conduct an
experiment using three extensively adopted open source vulnera-
ble benchmarks. The experiment results indicate that our method
ART4SQLi can effectively improve the conventional random test-
ing approach on three common benchmarks by more than 26%
in reducing the number of SQLi attempts before accomplishing a
successful injection.

Index Terms—Adaptive random testing (ART), attack payload,
SQL injection (SQLi), test case prioritization.

I. INTRODUCTION

DATABASE-DRIVEN Web applications are rapidly ap-
plied in a wide range of areas including online stores,

e-commerce, social network services, etc. At the same time, the
popularity makes them more attractive to attackers. The number
of reported Web attacks is growing sharply [76]. For instance, a

Manuscript received March 31, 2018; revised November 20, 2018 and March
19, 2019; accepted March 21, 2019. This work was supported in part by the
National Key Basic Research Program of China (project no. 2014CB340702)
and by the National Natural Science Foundation of China under Grant 61572150.
Associate Editor: W. K. Chan. (Corresponding author: Zhenyu Zhang.)

L. Zhang is with the University of Chinese Academy of Sciences, Beijing
100190, China, and also with the State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences, Beijing 100190, China
(e-mail: zlong@ios.ac.cn).

D. Zhang is with the First Research Institute, Ministry of Public Security,
Beijing 100733, China (e-mail: zhangdh15@gmail.com).

C. Wang is with the Department of Computer Science, Duke University,
Durham, NC 27708 USA (e-mail: chw148@ucsd.edu).

J. Zhao is with the School of Software Technology, Dalian University of
Technology, Dalian 116023, China (e-mail: zhaoj9988@dlut.edu.cn).

Z. Zhang is with the State Key Laboratory of Computer Science, Institute
of Software, Chinese Academy of Sciences, Beijing 100190, China (e-mail:
zhangzy@ios.ac.cn).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TR.2019.2910285

Fig. 1. Example of an SQLi vulnerability.

Web application attack report has observed an average increment
of around 17% in different types of Web attacks over a nine-
month period [35]. It was also reported that Web attacks had
become more sophisticated and dramatically longer in length
(44% longer than they were in previous reports), and a typi-
cal Web application may suffer more than 26 attacks in 1 min.
Another security report indicated that at least 8% of the Web
services of companies such as Microsoft and Google contained
multiple types of security vulnerabilities [72].

Within the class of Web-based vulnerabilities, SQL injec-
tion (SQLi) is labeled as one of the most serious threats by
the Open Web Application Security Project (OWASP).1 SQLi
refers to a class of code injection attacks, which are carried
out by composing a malicious user input into an SQL query
to alter the behavior of Web applications [25]. Fig. 1 shows an
example of login module, which parses user input (line 2), syn-
thesizes a query (lines 4–5), and retrieves matched items from
database (line 6). An attacker can fabricate a username “’ or
’a’=’a”, and use the login form to submit an SQLi. The login
module will synthesize the query “select * from users
where user_name=” or ’a’=’a’” as expected (lines
4–5), which will unconditionally retrieve all items from the
database, exposing sensitive data to the attacker.

In this example, the input “’/**/or/**/’1’=’1” is
called an attack payload, and the exploited login vulnerability
belongs to a kind of SQLi vulnerability. A lot of such vulnera-
bilities are ultimately caused by insufficient validation of user
inputs [25], [26], [28]. To exploit such vulnerabilities, attackers
make use of elaborately designed attack payloads to synthesize
malicious requests, and submit such requests to database-driven
Web applications.2 Once the crafty SQL queries are executed by
the application, attackers can obtain the privilege of accessing

1An open community dedicated to enable organizations to conceive, develop,
acquire, operate, and maintain trustable applications.

2The relationship of “payload” and “vulnerability” is similar to that of “test
case” and “bug” in conventional software testing.

0018-9529 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-8979-7014
https://orcid.org/0000-0002-8280-8462
mailto:zlong@ios.ac.cn
mailto:zhangdh15@gmail.com
mailto:chw148@ucsd.edu
mailto:zhaoj9988@dlut.edu.cn
mailto:zhangzy@ios.ac.cn

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON RELIABILITY

the underlying database (in this example) or even take control
of the system that hosts the Web applications. In the past years,
SQLi vulnerabilities have become the top threat for database-
driven Web applications, and SQLi attack is known as one of
the most popular attacks.

Although the cause of SQLi is easy to understand, SQLi
vulnerabilities are hard to detect and SQLi attacking events
never disappear. In consequence, the approach to discover
SQLi vulnerabilities is of great importance. Static analysis is
a conventional security mechanism to address SQLi issues. For
example, Fu et al. [22] described a compile-time static SQLi
analysis framework, based on symbolic execution. When an
SQL query is submitted, a hybrid constraint solver is used to
determine corresponding user inputs that could lead to breach
of information security. However, since constraint solving is
often related to substantial computational complexity, static
approaches come with intrinsic scalability problems such as
state explosion. Besides the substantial computational com-
plexity, static approaches also face other realistic problems.
In practice, few companies are willing to share their source
code because—“given enough eyeballs, all bugs are shallow”
(the Linus’ Law [57]). As a result, dynamic methods such as
black-box testing become a popular choice. One representative
method is mutation-based fuzz testing [3], [64]. This technique
is effective to generate test cases covering many types of
complicated attack patterns, such as BASE64 encoding attacks
and white space obfuscation injections.

An effective testing-based SQLi vulnerability discovery
technique should reduce applications from SQLi vulnerabilities
before the applications are released [64]. Currently, a de-facto
manner is to manipulate a collection of known attack payloads,
such as the SQL query string, “’ or ’a’=’a,” to carry out
a black-box testing. On one hand, a major challenge is that
there are many different kinds of SQLi attacks and countless
variations on these basic forms. To cope with that, a payload
collection is often huge in size and unavoidably contains redun-
dancy. Executing such a payload collection without selection
is infeasible. On the other hand, because SQLi vulnerabilities
may hide deeply, and effective payloads are often rare. They
comprise only a small portion of the entire payload collection,
manifesting a sparse distribution. As a result, even if we have
a set of attack payloads covering many types of SQLi attacks,
it is still difficult to pick out the effective payloads from it. In
addition, it may be complicated to statically evaluate or predict
the execution result of attack payloads sometimes. Researchers
have proposed an automatic mechanism for testing result check-
ing and evaluation, but professional engineers are still necessary
to manually complete the checking and judging tasks (e.g., SQLi
existing in the HTTP Head Referrer, CVE-2011-3340) [3],
[58]. To our best knowledge, such issues of testing-based SQLi
vulnerability discovery have not been adequately addressed.

In this paper, we propose a technique ART4SQLi to facilitate
SQLi vulnerability discovery. It is based on the observation from
our experience that “effective attack payloads are rare and un-
evenly distributed in the payload collections.” It uses a context-
free grammar (CFG) [31] to describe attack payloads. Initially,
it decomposes the original attack payload into tokens [29]. After

that, it applies training label cleaning [52] to extract the feature
vectors. Then, it makes use of the cosine distance to measure
the distance between two vectorized attack payloads. Finally,
it schedules the payload execution in an adaptive random test-
ing (ART) manner, by selecting a payload set of a certain size
according to the distance metrics. The payloads in such a set
will be executed in turn, until a successful SQLi is reached. In
such a way, ART4SQLi selects promising attack payloads to
discover SQLi vulnerability, with the aim to reduce the num-
ber of unsuccessful attack trials. We conduct an experiment to
evaluate the effectiveness of ART4SQLi, and compare its effec-
tiveness in discovering SQLi vulnerabilities against the original
random testing approach. We carry out the experiment on three
open source vulnerability simulation benchmarks. To measure
the effectiveness, the F-measure3 [10] is adopted to estimate the
expected number of attack payloads required to accomplish an
SQLi. Experiment results show that ART4SQLi achieves 26%
effectiveness improvements over its original random testing ap-
proach on Web for Pentester, DVWA 2014, and MCIR-SQLol
subjects.

The main contributions of the work are as follows.
1) It reports that the effective payloads for detecting SQLis

are rare and sparsely distributed, and tend to cluster.
2) It presents the feature vector extraction method and

distance metrics quantification process for SQLi attack
payloads.

3) It presents an ART-based novel technique ART4SQLi to
facilitate SQLi vulnerability discovery.

4) An experimental evaluation shows that ART4SQLi im-
proves the original random testing approach on Web
for Pentester, DVWA 2014, and MCIR-SQLol by more
than 26%.

The rest of this paper is organized as follows. Section II mo-
tivates this paper. In Section III, we propose and elaborate on
our method ART4SQLi. Section IV uses three common bench-
marks to evaluate the effectiveness of our proposal. Section V
introduces related work. Section VI concludes this paper.

II. BACKGROUND AND MOTIVATION

In this section, we introduce the background of SQLi and use
an example to motivate this paper.

A. Preliminaries

To evaluate the SQLi vulnerability risk of a Web application,
a security expert or a third-party service provider often tends to
simulate the de-facto SQLi attacks. Fig. 2 shows the process.

Generally, to evaluate whether a Web application comes with
SQLi issues is a high-frequency task. A security expert or an
attacker (in the rest of this paper, we do not differentiate the
two roles since they share the same workflow) often has a pre-
pared collection of attack payloads in hand, as shown in Fig. 2.
The role of the payloads is similar to the test cases in a con-
ventional testing task. However, different from a conventional
software testing task, security experts usually use a common set

3Not the namesake metrics in machine learning (F-measure [47]).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: ART4SQLi: THE ART OF SQL INJECTION VULNERABILITY DISCOVERY 3

Fig. 2. De-facto workflow of SQLi and our work.

of attack payloads to discover SQLi vulnerabilities in various ap-
plications, because the targets (e.g., MySQL, Oracle, Microsoft
Access, or common operating systems and platforms) often have
similar security issues (e.g., single quote injection and relative
path injection). In practice, such attack payloads can be collected
from testing tools like sqlmap, Pangolin, BSQL Hacker, secu-
rity forums such as exploit-db, GreySec, websites like fuzzdb,
PentesterLab, and so on.

At the same time, in order to carry out more types of injec-
tion, security experts will usually mutate the original collection
by using some mutation tools or plugins such as sqlmap tamper.
Like a test script used to manipulate test cases to drive a unit un-
der test, a payload is loaded into a Web application from various
access entries. The easiest method is to replace some parame-
ters in a request url or directly type malicious input in a page
form. Sometimes, people also construct an HTTP request pack-
age manually to test more sensitive section, such as referring
section, user-agent section, and host section.

Finally, a security expert will judge whether an injection suc-
ceeds, according to the response of the target Web application.
In this checking phase, some tools are built to help understand
the response and determine the result according to predefined
features [3].

B. Observations on Current Approach

We have the following observations on the current SQLi vul-
nerability discovery approach.

1) Huge Size of a Payload Collection: Previous works have
summarized some classes of SQLi vulnerabilities, such as
Boolean-based blind SQLi, error-based SQLi, union query
SQLi, stacked queries SQLi, and time-based blind SQLi [26].
On the basis of these basic types, there are countless variations
and many kinds of SQLi attacks. A good payload collection
(aka. payload collection) is updated over time to not miss any
effective SQLi payload.

The defense to prevent all kinds of SQLi is very hard. For in-
stance, function and keyword filtering is expected to prevent Web
applications from being attacked by using a functions and key-
words black list. Such keywords may include sleep, or, and, and
so on. Although the technique is effective and performs well in
practice, applications equipped with such security mechanisms
may still be vulnerable to SQLi attacks. A professional attack-
ers might evade the inspection by using case changing, character
encoding, or inline comment methods. If he submits an injection
code containing a keyword or SQL function that is absent in the
black list, such an injection may succeed. Thus, it is important
to include enough payloads for testing in order to discover SQLi

Fig. 3. Example of SQLi vulnerability.

vulnerabilities as more as possible. At the same time, mutation-
based methods are employed to generate payload instances from
payload template [33]. For example, Appelt et al. [3] used a set
of mutation operators to generate a lot of payloads. Their evalua-
tion demonstrated that it is effective to detect SQLi vulnerability.
In both cases, a collection of payloads is huge in size because
of the large scope or diversity of attack types, and the attempt to
execute the whole collection may not be always practicable.

Furthermore, an attacker in practice seldom performs a brute-
force trying to expose SQLi vulnerabilities, since such a manner
increases both attacking cost and the risk of exposing the at-
tacker [20]. Modern application servers are often equipped with
the mechanism of recognizing suspicious queries. Once the in-
tention of an attack is realized, an application may refuse to
serve, slow down response, or throw out misleading answers. In
practice, a hacking tool may even switch multiple attacking tac-
tics in a short period. A sequential evaluating of all payloads in
a payload collection against a Web application neither simulates
the realistic practice nor be feasible to discover SQLi vulnera-
bility given limited resources.

2) Sparse Distribution of Effective Payloads: A Web appli-
cation may have complicated input validation mechanism to pre-
vent some SQLi attempts. At the same time, SQLi attacks have
never become extinct, and security experts always learn from
smart hackers’ unexpected attacking tactics.

Fig. 3 lists out the PHP code of a concrete login module
in one of our previous tasks [73]. We find that this code
excerpt has an input validation mechanism: the function
str_replace() located at line 6 will filter whitespace
and similar keywords. For example, if we start an attack
using a usual payload, “’ or ’a’=’a’#,” the special
character “’” and all whitespaces will be removed. As a
result, the synthesized query statement will be “select *
from users where user_name=’ora=a#’,” which
basically does no harm to the Web application. However, the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON RELIABILITY

TABLE I
EXAMPLE OF PAYLOADS

special character sequences “/**/” and “%27” are miss-
ing in the black list (lines 4–5). A well-designed injection
trial can thus beg the validation mechanism. Let us take
the payload “%27/**/or/**/%27a%27=%27a%27#” to
illustrate it. When such a malicious user name is submit-
ted, neither “/**/” nor “%27” is recognized as keywords
and the query statement “select * from users where
user_name=’%27/**/or/**/%27a%27=%27a%27#’”
will be synthesized. Such a strange string equals to “select *
from users where user_name=” or ’a’=’a’” in
effect, which can unconditionally retrieve all items from the
“users” table.

Without knowing the implementation detail of a Web appli-
cation, what we can do is to try each payload candidate in a
payload collection database. In practice, a strong payload collec-
tion covers many SQLi attack types, and the effective payloads
are mostly a very small part of the full collection. This small
proportion makes identifying them difficult.

3) Uneven Distribution of Effective Payloads: We further re-
alize that effective payloads often resemble one another in syntax
and grammar since they are products of similar tactics. Table I
lists out some effective payloads used to attack the login mod-
ule in Fig. 3. The table has two parts, i.e., the upper part and the
lower part, which list out three effective payloads and ten inef-
fective payloads. Let us focus on the upper part first. The first
column shows the payload strings. The second column “intra-
class distance” calculates an intra-class distance, which is the
average edit distance similarity [59] between an effective pay-
load to the other effective payloads. The third column “interclass
distance” calculates an interclass distance, which is the average
edit distance similarity between an effective payload to all the
ineffective payloads. For example, the first one is the payload
we demonstrated in the last section. Its average edit distance to
the other two effective payloads is 18.2, while the average edit
distance between it and the ten ineffective payloads is 64.7. Ac-
cording to [59], it means that the first one payload is very similar
to the other two effective payloads showed in Table I, and there
is a great difference between this payload and the ineffective
payloads.

From Table I, we have the observation that the effective pay-
loads for the sample vulnerable page are similar to one another.
At the same time, they look different from the ineffective pay-
loads. The fact is related to the validation mechanism, which
filters characters or character sequences according to the black
list (lines 4–5 of Fig. 3). As a result, the surviving keywords are
rare and the corresponding effective payloads often have central-
ized distribution or cluster together in the space of the payload
collection. For the same reason, when an effective payload is
found for some type of SQLi vulnerability, payloads closed to it
are considered in practice and they are more likely to reveal the
same vulnerability.

4) High Expense to Evaluate Payloads: Each time we eval-
uate a payload on a Web application, we need to obtain the
postcondition state of the Web application after it answers the
input. We then compare the state to the predefined security state
to determine whether an SQLi have been triggered. Researchers
have proposed some automatic mechanisms for result checking
and evaluation [3], [58].

However, manual intervention is still necessary at times. For
instance, in some Web applications, the injectable parameters
appear in a particular section, such as the HTTP Head Referrer
(CVE-2011-3340) section. Because the response is hard to pre-
defined, and the location is usually ignored by the testing tool, we
have to manually check whether the payload is injected success-
fully. As a result, the most accurate and effective way to check
or evaluate the payloads is to have software engineers check ev-
ery payload input and its response. Furthermore, response from
the Web application can be also random or misleading, which
makes automatic rules even harder to apply.

During the process, the Web application server sometimes
blocks our requests and even responds nothing, we have to take
a rest or change the IP, explorer agent or other information, to
continue. It can be expensive to evaluate a payload, which also
limits the possibility of large-scale or in-parallel testing.

C. Our Basic Idea

Fuzz testing [23] is extensively used to discover SQLi vulner-
ability [80]. It is technically a kind of random black-box testing
method. A software engineer first collects or designs SQLi pay-
loads, then selects test cases from the payload collection uni-
formly at random without replacement, and finally uses selected
payloads to evaluate the target Web application. Let us recall the
goal of discovering SQLi vulnerability, which is to find an ef-
fective payload (that can successfully reveal SQLi vulnerability
in the Web application) as fast as possible. It is fundamentally a
black-box testing process. Considering the observations in the
previous section that we have reported, we realize that a practical
payload-driven testing process to discover SQLi vulnerability
has not been given adequate attention [19], [22], [60].

We thus consider to find an approach to select effective pay-
loads as far as possible, so as to reduce the time of the payload
evaluating process and improve the performance of discovering
SQLi vulnerability. In our observation, we find that effective
payloads tend to have sparse distribution and cluster in the pay-
load collection. As a result, we need to find payloads that are

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: ART4SQLi: THE ART OF SQL INJECTION VULNERABILITY DISCOVERY 5

Fig. 4. ART4SQLi testing process overview.

far from those revealing no SQLi vulnerabilities, and evaluate
such promising payloads in the next evaluation, with the aim to
trigger SQLi vulnerability early. Many methods are proposed to
select test cases that lead to failures, and their cost is less than the
simple random manner, such as test case prioritization [19], [60],
adaptive random test [13], [14], [46], etc. However, no research
is reported in the field of testing-based SQL vulnerability.

The main challenge we face to approach in such a direction
is how to estimate effective payloads from evaluated ones. This
includes at least two aspects:

1) We need to find a suitable distance metrics, in which the
distribution of payloads matches our perspective that ef-
fective ones cluster in the payload collection.

2) We need to find an effective algorithm to select candidate
payloads for evaluation, so as to pick out promising ones
without involving in too much computation cost.

In the next section, we will elaborate on our method.

III. OUR METHOD: ART4SQLI

In this section, we first illustrate the process of our method
ART4SQLi and key algorithms, elaborate on a distance metrics
needed by the algorithm, and give research questions.

A. Overview of ART4SQLi

One aim of ART [7], [10] is to find the first test case causing
the failure more quickly than the ordinary random testing. The
process of ART4SQLi is inspired by ART. Fig. 44 depicts an
overview of the process of ART4SQLi. As mentioned in the
previous sections, we focus on scheduling the prioritization of
payloads for evaluation by iteratively selecting more promising
payload candidates.

To start such a process, we assume that a collection of payload
is ready. We refer to it as the payload collection, and use it as

4The term “evaluated set” of this paper and the term “executed set” of ART
techniques have the same meaning.

Algorithm 1: FSCS-Fixed Size Candidate Selection.
Input: Payload collection: PC
Input: Evaluated set: ES
Input: Last payload: plast

Output: Next payload: p
1: ES ← ES ∪ {plast} Step 4a �
2: CS ← ∅ Step 4b �
3: for i = 1 to FixedSize do
4: randomly pop q from PC
5: CS ← CS ∪ {q}
6: end for �
7: p← FNC(CS,ES) Step 4c �
8: PC ← PC \ p
9: return p �

input to ART4SQLi. Such a candidate selection process has four
steps, as illustrated in the figure.

Step 1: Select the first payload p.
Step 2: Evaluate the selected payload p.
Step 3: End if any successful injection, otherwise Step 4.
Step 4: Select the next payload p, and goto Step 2.
More specifically,Step 1 randomly selects a payload from the

payload collection, since we have no information for reference at
the very beginning. In Step 2, the selected payload is submitted
to test a target Web application through the access entries of
that application. We judge whether any SQLi vulnerability has
been revealed by checking the response of the Web application.
The process completes at Step 3 when an injection succeeds;
otherwise we come toStep 4 to select the next payload. The next
payload will be selected from the payload collection based on a
heuristic algorithm (given as Algorithm 1) with the aim to find
a payload far from all the evaluated ones. The selected payload
will be forwarded to Step 2 for evaluation. In particular, when
there is no available payload in the payload collection (e.g., all
the candidates are exhausted, revealing no SQLi vulnerability),
the process ends at Step 4.

To ease explanation, we refer to Step 2 as Payload Evalua-
tion, Step 3 as Payload Examination, and Step 4 as Payload
Selection, in the rest of this paper.

B. Step 4: Payload Selection

ART is based on the intuition that an even spread of test cases
is more likely to detect failures using fewer test cases than or-
dinary random testing [10]. It considers the distance between
the previous test cases and the candidate set to select the next
test case(s). Accordingly, we design the payload selection of
ART4SQLi. As illustrated in Fig. 4, Step 4 further consists of
three sub-steps.
Step 4a: Collect the last payload.
Step 4b: Generate a candidate set.
Step 4c: Select the next payload p.

The pseudo code fixed size candidate selection (FSCS) imple-
menting Step 4 is given in Algorithm 1, where line 1 performs
Step 4a, lines 2–6 perform Step 4b, and lines 7–9 perform
Step 4c. More specifically, Step 4a maintains a set of all the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON RELIABILITY

Algorithm 2: FNC - Farthest Nearest Candidate.
Input: Candidate set: CS
Input: Evaluated set: ES
Output: Next payload: p

1: p← null, max_dist← −∞
2: for all u ∈ CS do
3: min_dist← +∞
4: for all v ∈ ES do
5: dist← Distance(u, v)
6: min_dist← min{min_dist, dist}
7: end for
8: if max_dist < min_dist then
9: p← u, max_dist← min_dist
10: end if
11: end for
12: return p

executed payloads. We refer to it as an evaluated set. In Step
4b, we randomly generate a fixed-sized subset of the payload col-
lection. It is referred to as a candidate set. On line 3, FixedSize
indicates a global parameter, which is the size of the candidate
set. After that, Step 4c selects a payload p from the candidate
set, satisfying that p is the one having the maximum distance
from the evaluated set. Note that PC and ES are also global
parameters, which are initialized to be the set of payload collec-
tion and empty, respectively. Every time a payload is selected
and evaluated, it is removed from PC and added to ES, until
any SQLi vulnerability is revealed.

The FSCS algorithm is based on our observation that the ef-
fective payloads tend to cluster together. As a result, if a set of
previously evaluated payloads have not revealed any SQLi vul-
nerability, we need to select payloads far from them, with the
aim to increase the possibility to reveal failures [12].

A detailed process of selecting p from the candidate set
(line 7 of Algorithm 1) is given using the pseudo code FNC in
Algorithm 2. Line 2 iterates each candidate in the candidate
set, lines 3–7 calculate the minimum distance min_dist of the
candidate by visiting every evaluated payloads, and lines 8–10
select the most promising candidate, which maximizes min_dist.
Finally, line 12 returns the selected payload that has the maxi-
mized minimum distance. Such a distance is also formulated as
follows:

max
u∈CS

{
min
v∈ES

{Distance(u, v)}
}
. (1)

Line 5 in Algorithm 2 involves a distance formula Distance. In
the next section, we elaborate on how we use it to calculate the
distance of payloads.

C. Payload Distance—Distance
The selection of distance metrics is crucial to our method.

First, we will introduce the grammar used to understand a pay-
load string. We next state how we extract feature vector from the
payload string. Finally, we employ a cosine distance to calculate
the distance between two feature vectors.

Fig. 5. Syntax of payload [4].

1) Decomposition of a Payload String: In our method, we
base on the CFG for SQLi proposed by Appelt et al. [4] to
design our own grammar. In order to incorporate payload forms
like time-based blind SQLi,5 we extend their CFG by adding
new grammar components. The final specific grammar definition
is given in Fig. 5. The SQLi payload grammar is defined by
using extended backus normal form ([63]), in which payload
is the start symbol, “::=” is the production symbol, “,” means
concatenation, and “|” represents alternatives. Note that this is
an excerpt of the complete grammar.

A parse tree (aka. parsing tree) is an ordered, rooted tree that
represents the syntactic structure of a string according to a CFG.
In our method, each SQLi payload is a malicious attack string,
which can be parsed by an SQLi parser using a corresponding
SQLi derivation tree. On the basis of the grammar proposed in
Fig. 5, we parse a payload string into such a tree structure [4].
In the derivation tree, the root node is the start variable. All the
internal nodes are labeled with variables, and all the leaves are
labeled with terminals [63]. We thus use such a derivation tree
as a graphical representation of an SQLi payload string. The leaf
nodes of the derivation tree are called the token of the parsed
payload (i.e., the minimal indecomposable part for the parsed
payload).

5For time-based attacks, the attacker needs to instruct the database to perform
a time-intensive operation. If the website does not return a response immediately,
the Web application is vulnerable to SQLi.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: ART4SQLi: THE ART OF SQL INJECTION VULNERABILITY DISCOVERY 7

Fig. 6. Decomposition example of a payload string.

We employ the open source tools flex and bison to compose
the parser. The process for parsing specific SQLi payload strings
by applying the derivation tree is referred to as the String De-
composition process. In this process, payload strings are loaded
into the SQLi derivation tree, and the output consists of a set
of ordered tokens according to the position where each token is
located in the corresponding payload string. The decomposition
result for each payload string is called a decomposition of that
payload, in this paper.

Fig. 6 depicts the parsing process of the single quote
attack payload “%27/**/or/**/%27a%27=%27a%27#”.
The parse tree first identifies that the given string is a single quote
payload (〈s_quote_payload〉). It then uses the corresponding
form to parse it hierarchically until all the terminal nodes are
indecomposable. In the next section, we introduce how to vec-
torize a decomposition of payload.

2) Feature Extraction: The feature extraction process is re-
garded as a vectorization. For each payload p, we count the
frequency of each token contained in the decomposition of p,
and generate a feature vector vp for p.

In the process, we calculate their entropy to extract a fea-
ture vector from a decomposition of payload [52]. For each
decomposition of a payload string, we apply an abstraction
process to generate a quantified vector to represent it. We refer
to this output vector as a feature vector of the payload. For
a payload p, its vectorized presentation is denoted as vector
vp =

[
w1

p, w
2
p, . . . , w

κ
p

]T
. Here, vp is a κ-dimension vector,

where T is the collection of decomposed tokens of all payloads,
and κ is the size of T . Each dimension of the vector vp is called
a token weight (also weight). It is calculated using (2), and
corresponds to a unique t token in T

wi
p =

log
(
F i
p + 1.0

)× log
(κ

N i

)
√∑κ

i=1

[
log

(
F i
p + 1.0

)× log
(κ

N i

)]2 (2)

where F i
p is the frequency of the token ti in the decomposition

of the payload p, and N i is the number of payload samples
whose decomposition contain the token ti. ART4SQLi thus
generate a k-dimension vector vp, which is used as the feature
vector for p. In the next section, we will introduce how to
calculate the distance between two vectors.

3) Distance Calculation: The distance metrics used to mea-
sure the distance of two payloads are based on their vector pre-
sentation proposed in previous section.

Suppose we are given two payloads p and q, which
have feature vectors vp = [w1

p, w
2
p, . . . , w

κ
p]

T and vq =[
w1

q , w
2
q , . . . , w

κ
q

]T
, respectively. We define the distance

Distance(p, q) of p and q by using the cosine similarity mea-
surement [75]. The calculation is given below

Distance(p, q) =
(

vp · vq

||vp|| · ||vq||
)−1

=

⎛
⎝

∑κ
i=1

(
wi

p · wi
q

)
√∑κ

i=1

(
wi

p

)2 ·
√∑κ

i=1

(
wi

q

)2
⎞
⎠
−1

.

(3)
The result of (3) is in the range [1,+∞). A distance calculated

as 1 indicates two identical vectors. A distance calculated as+∞
indicates two orthogonal vectors. An in-between value indicates
intermediate distances.

D. Complexity

We first analyze the time complexity of Step 4 in Fig. 4. We
suppose that Step 4 is repeated for F times (it will be named as
“F-Measure” later in Section IV-E) until finding the first effec-
tive payload. Line 1 of Algorithm 1 accumulates each evaluated
payload to form an evaluated set ES. ES thus increases its size
over the iterative process, and finally has F payloads. Lines
3–6 of Algorithm 1 show that we select a payload q from the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON RELIABILITY

TABLE II
EXPERIMENTAL SQLI SUBJECTS

payload collection for each iteration and repeat for FixedSize
times. Candidate set CS thus has FixedSize payloads and the
time complexity of lines 3–6 of Algorithm 1 is O(FixedSize).
The lines 2 and 4 of Algorithm 2 traverse CS and ES, re-
spectively. As a result, the time complexity of Algorithm 2 is
O(F · FixedSize) ·OD, where OD is the complexity of the
Distance function in (3). We further know that the time com-
plexity of Algorithm 1 is O(F · FixedSize) ·OD.

Since Step 4 is repeated for F times, the time complexity of
ART4SQLi is O(F 2 · FixedSize) ·OD.

In the worst case, the whole payload collection is exhausted to
find an effective payload. The time complexity in the worst case
is O(N2 · FixedSize) ·OD, where N is the size of payload
collection.

E. Research Questions

We want to answer the following questions.
Q1; Do the effective payloads cluster together in the pay-

load space described using the vector representation
proposed in Section III-C2?

Q2: Will the scheduling method proposed in Section III-
B more effectively find effective payloads, than the
original random manner?

Q3: Is the efficiency of the ART4SQLi process proposed
in Section III-A acceptable in practice?

Q1 will validate our experiences that effective payloads are
rare in the payload space. It will also evaluate the soundness
of the selection of our vectorization method. Note that with a

well-selected vectorization, the effective payloads are expected
to cluster together in the payload space. Only in that case, our
proposal to select a promising payload by maximizing its dis-
tance to the evaluated payloads makes sense. If the answer to
Q1 is yes, Q2 uses an empirical study to evaluate the effective-
ness of the proposal. If the answer to Q2 is yes, Q3 further finds
out whether the computation cost is acceptable. We will answer
these questions in the following sections.

IV. EVALUATION

In this section, we will introduce the experiment setup, includ-
ing payload collection preparation, benchmark selection, exper-
iment steps, and effectiveness measurement. After that, we will
give the experiment results and discuss threats to validities of
the empirical observations.

A. SQLi Benchmarks

In the experiment, we use three open source vulnerable Web
applications as the units under tests. They are Web for Pentester
I, Wooyun DVWA 2014, and SpiderLab MCIR-SQLol, which are
listed in Table II. They are well known as web vulnerability
testbeds [53], [71], which contain many intentionally embedded
representative Web issues, including SQLi flaws. We will test
the SQLi vulnerable pages within these three testbeds.

Web for Pentester I includes seven pages, each of which has
SQLi issues of different security levels. For example, the first
page named “SQLi01” in this experiment can be easily injected
by common attack payloads, while the second page “SQLi02” is

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: ART4SQLi: THE ART OF SQL INJECTION VULNERABILITY DISCOVERY 9

Fig. 7. Testing bed illustration.

equipped with whitespace validation to limit the use of whites-
pace attacking tactics. The last page “SQLi07” has the most
strict checking mechanism. Similarly, Wooyun DVWA 2014 has
seven pages for testing, which are different from those of Web for
Pentester I in order to simulate different SQLi vulnerabilities.
SpiderLab MCIR-SQLol has two groups of pages, SQLi01-08
and SQLi09-15, which are dedicated for clause-related SQLi.

B. Testing Bed

As showed in Fig. 7, the constructed testing bed to carry out
the experiment is composed of a testing server, a server under
test (SUT), and two monitors. The operating system of the SUT
is a Ubuntu Server 14.10, which runs an Apache Web Service
and a MySQL database. The testing server is also a Ubuntu 14.10
build host, which runs our method ART4SQLi together with a
testing agent.

ART4SQLi performs the candidate selection process, and
forwards the selected payloads to the testing agent. We use
burpsuite as the testing agent, which receives candidate pay-
loads from ART4SQLi, packs them into HTTP packets, and
requests SUT by using the packed HTTP packets. When it
receives a payload from ART4SQLi, it replaces a parameter
in the HTTP request package with the payload. The replaced
parameter has been previously defined, and can be located at
URL section, refer section, user-agent section, and other sec-
tions. For instance, “tester” is such a parameter for these
benchmarks. To test a page, we use the query in the URL for-
mat “http://test.com/sqli.php?uname=tester”
to submit a payload. We will locate “tester” in the URL,
and then replace it with a payload string. For example, dur-
ing the process, when the testing agent burpsuite receives the
payload “%27/**/or/**/%27a%27=%27a%27#”, it re-
places the predefined parameter “tester” with the payload
“tester%27/**/or/**/%27a%27=%27a%27#”. As a
result, the new query is “http://test.com/sqli.php?
uname=%27/**/or/**/%27a%27=%27a%27#”.

TABLE III
PREPARATION OF THE PAYLOAD COLLECTION

The subjects selected in our experiment have defined the re-
sponse pages that indicate successful injections. Once an SQLi
is triggered successfully, Web for Pentester I will reply with a
page containing a list of users and passwords in its predefined
database. Similarly, Wooyun DVWA 2014 will reply with a page
containing the input and a list of user information, once an SQLi
is triggered successfully. And SpiderLab MCIR-SQLol will re-
ply with a success notification along with user information using
a response page. These predefined page formats of each subject
are used as oracles to help determine whether a payload has
successfully injected a subject.

The two monitors are responsible for logging and judging
the testing results. Monitor 1 is used to record the requesting
information from the testing agent, and Monitor 2 is used to
log the database operations. Both the two sets of information
are processed by our testing scripts to determine whether the
requests has successfully discovered an SQLi vulnerability.

C. Payload Collection Preparation

Like most SQLi discovery technologies, ART4SQLi requires
an original payload collection, which is located on the testing
server. In our experiment, the sources used to prepare the original
payload collection are described in Table III.

First, we extract the injection part payloads from the sources
(e.g., fuzzdb) into a local file. We then use the tool sqlmap tamper

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON RELIABILITY

to mutate the extracted payloads. After that, we remove dupli-
cate mutations, and obtain a set of distinct payloads. All the
remaining payloads form the original payload collection.

In particular, our payload collection also include some time-
based blind payloads. They do not trigger any injection response
page. Their testing results are judged according to the difference
of response time, which is described in the next section.

D. Experiment Steps

To evaluate the effectiveness of ART4SQLi, we follow previ-
ous work [16], [17], [48], [49], [81] to use the standard random
manner (where a payload is selected by random in each itera-
tion) as a peer strategy for comparison. Our considerations are
as follows:

1) ART4SQLi is proposed in an ART manner, which is nat-
urally against the standard random strategy.

2) Using the random strategy as a baseline reflects the basic
capability of a technique.

In the rest of this section, we refer to the standard random
manner as Random consistently.

In our experiments, we create testing oracles using the mech-
anisms described in Section IV-A. More specifically, in the test-
ing process, the monitors will trigger a pause when either of
the following situations happens: 1) Monitor 1 receives pages
containing a predefined message or characters from a subject.
2) Monitor 2 detects a database SQL execution log, and monitor
1 does not receive a response page after a predefined threshold
time length. In the latter case, we deem that a time-based blind
SQLi has happened. For a time-based blind SQLi, we instruct
the database to perform a time-intensive operation. If there ex-
ists a database SQL execution log that is detected by Monitor 2,
it means that the payload has injected into the Web application
successfully.

In practice, after a testing process is paused, the current re-
quest packet and the corresponding payload will be sent to the
testing engineer, together with the monitor logs. The engineer
judges whether the current test flags an SQLi vulnerability. If
the answer is yes, the process completes; otherwise it continues
until an effective payload is found (recalling Section III-A). In
our experiment, this step is fully automatic.

In the experiment, we let the global parameter FixedSize to
be a suggested value 10 according to [10]. In addition, we store
the feature vectors and their corresponding payload strings into
a global hash table for acceleration purpose.

In our experiments, we separately carry out tests on the three
subjects. On each vulnerable page of the three subjects, we per-
form Random and ART4SQLi independently, record their effec-
tiveness, repeat the testing process for ten times, and calculate
the average results. The termination criterions of a test session
between ART4SQLi and Random are consistent. They will al-
ways iterate the next payload until the first effective payload is
found or all payloads have been exhausted.

E. Measurement

This section will introduce the metrics used to answer the
three research questions.

1) Distribution Metric: To validate the sparse distribution of
effective payloads, we are inspired by [10] to use an E-measure
metrics. In this paper, the metrics E-measure returns the number
of effective payloads in a payload collection. A smaller E-
measure means a more sparse distribution of effective payloads.

In this experiment, we make statistics for the effective pay-
loads in the whole payload collection. However, in practice, it
cannot be feasible to visit all payloads consecutively, especially
for a large payload collection. Furthermore, we use theDistance
defined in (3) to calculate the average distance among effective
payloads (referred to as Intra-Class Distance), and the aver-
age distance from effective payloads to ineffective payloads (re-
ferred to as Interclass Distance). The two distances on average
are used to validate whether effective payloads cluster together
in the payload space. A small Intra-Class Distance and a large
Interclass Distance will mean that the effective payloads tend to
cluster together in the payload space.

2) Effectiveness Metric: During the process of evaluating
each payload returned by ART4SQLi, we know an effective pay-
load is found, and accordingly ART4SQLi is terminated, when
an SQLi succeeds. The process of Random is similar. As a re-
sult, the less the payloads evaluated, the better the effectiveness
of an algorithm is. To measure the effectiveness of ART4SQLi
and Random, we follow [10] to use the F-measure metrics. F-
measure calculates how many payload are executed until the first
effective payload is found. A lower F-measure value means that
fewer tests are used to accomplish the task.

The F-measure metric also reflects the true/false posi-
tive/negative concepts in classification. ART4SQLi searches for
payloads to discover SQLi vulnerability, so we mark a payload
as effective if it reveals any failures in a Web application. The
process of ART4SQLi always stops at the first such effective
payload. We thus count the first effective payload as a true-
positive sample. For the same reason, we count all the payloads
evaluated ahead of the first effective one as false-positive sam-
ples, since they are given higher suspiciousness by ART4SQi
but evaluated ineffective. In such a way, we let F-measure reflect
the extents of true positive and false positive properties. Suppose
ART4SQLi terminates with the mth (>= 1) executed payloads
(which are evaluated effective), we also say we encounterm− 1
false-positive and 1 true-positive. Note that ART4SQLi stops
evaluating the payloads after the mth. As a result, we get no
suggestion for a true negative or false negative.

For tests on each page of each subjects, we calculate the F-
measure of ART4SQLi and Random separately. Since a test-
ing strategy yielding a lower F-measure value is considered
to be more effective, we expect a lower F-measure value for
ART4SQLi than that of Random. We thus calculate R−A

R ×
100% to evaluate the effectiveness improvement, where R and
A stand for the effectiveness of Random and ART4SQLi in F-
Measure, respectively. Such an equation measures the improve-
ments from Random to ART4SQLi. The greater the value is, the
more effective ART4SQLi is than Random.

3) Efficiency Metric: To evaluate the practicability of our
proposal, we simply record the time used in each phase.

Since we report each test for ten times, we further compute
the average time used to complete each testing task. Thus, the
result is present as the average time spent to find out the first

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: ART4SQLi: THE ART OF SQL INJECTION VULNERABILITY DISCOVERY 11

TABLE IV
E-MEASURE, INTRA-CLASS, AND INTER CLASS DISTANCE OF PAYLOADS

effective payload toward a specific vulnerable page. The timing
issue consists of two parts, namely, the time spent to generate
the candidate payloads, and the time used to execute and reach
an effective payload.

All the experiment results are summarized and reported in the
next section.

F. Experiment Results

We report our experiment results in three sections to answer
the three research questions, respectively.

1) Answering Q1: The distribution of effective payloads on
a subject benchmark is evaluated using the E-measure metrics,
the intra-class distance, and the interclass distance. These re-
sults with respect to the three subjects Web for Pentester I,
Wooyun DVWA 2014, and SpiderLab MCIR-SQLol are shown
in Table IV.

Table IV consists of three parts, which report the experiment
results in the three metrics, respectively. We first come to the
“E-measure (%)” part. It shows the results of applying the met-
rics E-measure to calculate the percentage of effective payloads
with respect to each vulnerability page of each benchmark. To
do that, we evaluate each payload in the payload collection,
repeat the process on each vulnerability page, and record the
data. Take the first cell as example. The number 1.58% indicates
that for the vulnerability page SQLi01 of the benchmark Web
for Pentester, there are 1604 effective payloads in the whole
payload collection. The second number 0.53% in the same row
indicates that there are 538 (less than 1604, with respect to
SQLi01, since the SQLi02 case has more strict validation mech-
anism) effective payloads for page SQLi02. The last number

(in the Average column) in the same row shows that on average
there are 650 (0.64%) effective payloads for Web for Pentester I.
The other rows can be similarly interpreted. We find that there
are on average 429 (0.40%) and 538 (0.53%) effective payloads
for Wooyun DVWA 2014 and SpiderLab MCIR-SQLol, respec-
tively. We further know that on average there are 517 (0.51%)
effective payloads for a vulnerability page. Our basic impres-
sion is that the effective payloads expose a small portion in the
payload space.

The second part “intra-class distance” of Table IV reports the
on average distance of two effective payloads, with respect to
each vulnerability page. To get the results, we calculate the mean
pair-wise distance for the ten effective payloads (recalling that
we repeat our tests for ten times and find one effective payload
each time) of each vulnerability page, by averaging the distance
of 10×9

2 = 45 pairs of effective payloads. The third part “in-
terclass distance” of Table IV reports the on average distance
of effective payloads to ineffective payloads, with respect to
each vulnerability page. To get the results, we calculate a mean
pair-wise distance between effective payloads (ten in total) and
ineffective payloads (collected from all the ten tests) of each
vulnerability page, by averaging the distance with respect to all
the effective–ineffective pairs. Take the same page for example,
we find that such an intra-class distance and the interclass dis-
tance for the page SQLi01 of Web for Pentester are 14.28 and
68.13, respectively. It means that the average distance of two ef-
fective payloads for SQLi01 is 14.28, and the average distance
between an effective payload and an ineffective payload is 68.13.
By comparing the two numbers, we say that the effective pay-
loads for SQLi01 tend to cluster together in the payload space.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON RELIABILITY

TABLE V
PAIR-WISE COMPARISON OF ART4SQLI AND RANDOM ON EACH INDIVIDUAL SUBJECTS

Furthermore, the average value of such a distance for Wooyun
DVWA 2014 and SpiderLab MCIR-SQLol are 17.32 and 13.55,
respectively. On average, we observe an intra-class distance of
15.04 and an interclass distance of 65.85 for all the benchmarks.

Finally, we answer Q1 as follows:
A1: The effective payloads, with respect to each subject

benchmark, expose a sparse distribution and tend to
cluster together in the payload space.

2) AnsweringQ2: The effectiveness of ART4SQLi and Ran-
dom in revealing SQLi vulnerabilities on a subject benchmark is
evaluated using the F-Measure metrics. The experiment results
of ART4SQLi and Random in F-Measure on Web for Pentester

I, Wooyun DVWA 2014, and SpiderLab MCIR-SQLol are shown
in Table V.

Table V consists of four parts. The first part “ART4SQLi (A)”
lists out the effectiveness of ART4SQLi in F-Measure, for each
page, each benchmark, and the whole experiment. The second
part “Random (R)” lists out the effectiveness of Random in F-
Measure. Let us take the first cell to illustrate to the contents.
It shows that the F-Measure for ART4SQLi and Random on
the SQLi01 page of Web for Pentester I are 264.2 and 329.3,
respectively. It means that on average (recalling that ten indi-
vidual tests are conducted for each page to avoid sample bias),
264.2 and 329.3 payloads needed to be evaluated before an SQLi

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: ART4SQLi: THE ART OF SQL INJECTION VULNERABILITY DISCOVERY 13

Fig. 8. Web for pentester.

vulnerability is revealed, by ART4SQLi and Random, respec-
tively. We further use the ratio R−A

R × 100% to calculate the im-
provements from Random to ART4SQLi and report them in the
third part “R−A

R × 100%” of the table. We say that ART4SQLi
makes 19.77% improvements over Random on SQLi01 of Web
for Pentester I. on average, such an improvements are 21.81%,
28.38%, and 28.23%, for the three benchmarks, and 26.72% on
average. These data shows that ART4SQLi have an effective
improvements over Random.

We next calculate the standard deviation of the ten improve-
ments (in R−A

R × 100%) for each page, since we want to know
whether such an improvement supports a stable observation. The
results are shown in the “std. ev.” part of the table. We find that
the values are relatively high (in the range of [22%, 116%]). It
means that though the effectiveness can be observed on average,
they are not stably observed on each subject. We further want
to know whether such improvements are statistically significant.
We adopt the Wilcoxon signed rank test method, which is a non-
parametric test for two populations when the observations are
paired. The p-value of the Wilcoxon signed rank test can be used
to measure the difference level between two populations via eval-
uating a hypothesis of no significant difference. Here, a p-value
less than a chosen significance level (e.g., 0.05) indicates the
rejection of the hypothesis, otherwise a failure to reject the hy-
pothesis at the chosen significance level. From the “p-value” part
of the table, we observe that the p-values of Wilcoxon signed
rank test conducted with each page, each benchmark, and the
whole experiment set are always less than 0.05. It means that
the hypothesis is always rejected at the significance level of 0.05
and a statistical significance exists.

From Table V, we can find that on average ART4SQLi gives
a roughly 26.72% improvement over Random. However, there
are still counter-examples on which the improvements are less
than 20%. We will further study them in Section IV-F4.

To give an intuitive view, we further use the box-whisker plots
in Figs. 8–10 to represent the data. In these figures, the X-axis
represents pairs of comparison on each page of each bench-
mark. The Y-axis is the effectiveness of ART4SQLi or Random
in F-Measure, i.e., the number of payloads evaluated before

Fig. 9. Wooyung DVWA.

revealing the first SQLi issue. Each column of box-whisker, no
matter ART4SQLi or Random, depicts statistics of ten points
(since each test is repeated for ten times in our experiment).
The top of the upper whisker shows the maximum value in F-
Measure among ten tests, while the bottom of the lower whisker
shows the minimum value. The boundaries of the box corre-
spond to the 75th percentile (upper quartile) and the 25th per-
centile (lower quartile) of ten points, with the median shown
within the box. The difference of upper quartiles and lower quar-
tiles is called IQR. Any results that are either 3IQR above the
third quartile or 3IQR below the first quartile are outliers, and
are labeled as “+” signs in the plots. Whiskers of each box ex-
tend to the minimal and maximum results within the non-outlier
data.

From Figs. 8–10, we can see that in most cases, ART4SQLi
(represented by the black boxes) outperforms Random (repre-
sented by the red boxes). Let us take the first pair of boxes in
the first figure as example. It shows that on the page SQLi01
of Web for Pentester, ART4SQLi and Random can reveal an
SQLi vulnerability by evaluating 135 and 185 payloads in the
best case, 414 and 945 payloads in the worst case, and 264.2
and 329.3 payloads in a median level. The pairs of numbers
are 〈221, 310〉 and 〈168, 421〉, by referencing the 25th and 75th
percentile points. Such comparison reflects the effectiveness
of our proposal and are consistent with our observations in
Table V. In other words, ART4SQLi shows observable ad-
vantages over Random, in F-Measure. Similar results are ob-
served with results of Wooyun DVWA 2014 and SpiderLab
MCIR-SQLol. For example, in Fig. 9, on SQLi01, Random
needs to evaluate approximately 35% more payloads than
ART4SQLi to find a SQLi issue. In Fig. 10, similar im-
provements are also observed on SQLi03, SQLi12, SQLi14,
and SQLi15.

Moreover, for some pages, the maximum ART4SQLi testing
results are even equal or less than the median value of Random. It
means in the worst case, the performance of ART4SQLi is equal
to or even better than the mean performance of Random, such as
SQLi02 of Web for Pentester, SQLi04 of Wooyung DVWA, and
SQLi04 of SpiderLab MCIR-SQLol.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON RELIABILITY

Fig. 10. MCIR-SQLol.

TABLE VI
TIMING OF ART4SQLI AND RANDOM ON EACH INDIVIDUAL SUBJECTS

Finally, we answer Q2 as follows:
1) In summary, our experiments have demonstrated

that ART4SQLi is able to reveal SQLi vulnerabil-
ity 26% faster, on average, than the standard random
manner.

3) Answering Q3: We use Table VI to give statistics of the
time issues of ART4SQLi and Random. It consists of three parts,
which shows the time used to execute a payload on each page,
each benchmark, and the whole experiment set, by ART4SQLi,
by Random, and the different from the latter to the former,
respectively.

To achieve that, we perform the following steps. For both Ran-
dom and ART4SQLi, we count the time elapsed from picking
out a payload to finishing the evaluation of that payload, and let
the time summing up for each payload evaluated divided by the
number of payload evaluated to calculate such a “time per pay-
load.” Since payloads are selected in random by Random and
adaptively by ART4SQLi, the report timing data are different.
From the table, we observe that ART4SQLi always needs more
time than Random to process a payload. For example, on page
SQLi01 of Web for Pentester, the on average time to process
a payload is 23.52 by Random and 23.78 by ART4SQLi. We

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: ART4SQLi: THE ART OF SQL INJECTION VULNERABILITY DISCOVERY 15

TABLE VII
WORST CASE ANALYSIS

TABLE VIII
TYPE OF EFFECTIVE PAYLOADS [26]

further use A−R
R to calculate the relative different from Random

to ART4SQLi. It means that 1.09% additional cost is needed by
using ART4SQLi to replace the original random testing manner.
The other cells and the cell in the “Average” column show sim-
ilar phenomenon. At the same time, we also observe that these
exist some counter-examples, which needs more time to eval-
uate a payload by Random on average, than by ART4SQLi. It
is due to that a long-lasting payload happened to be selected by
Random, since we are counting the evaluation time. We do not
exclude these samples since ART4SQLi also have the chance
to select a long-lasting payload and it makes no harm to a fair
comparison. Finally, from Table VI, we find that ART4SQLi
needs a roughly 3.94% additional running time than Random on
average. We consider such a cost acceptable in practice.

Finally, we answer Q3 as follows:
1) The additional cost by ART4SQLi is acceptable in

practice.
4) Worst Case Discussion: Next, we examine four worst

cases, on which ART4SQLi produces only moderate improve-
ments (i.e., less than 20%) over Random. As showed in
Table VII, they are SQLi01, SQLi05 of Web for Pentester,
SQLi07 of Wooyun DVWA, and SQLi04 of MCIR-SQLol. The
corresponding effectiveness improvements of ART4SQLi over
Random are 19.77%, 13.33%, 17.31%, and 11.83%, respec-
tively.

We investigate the original payload collection we used in
testing, and find that, for these four pages, the set of effective pay-
loads expose either a very high or a very low portion of the orig-
inal payload space. For example, the vulnerable page SQLi01
in Web for Pentester is a simple string-based injection page
without any inspection mechanisms, and the vulnerable page
of stage SQLi04 in MCIR-SQLol is also a string injection page
with a very simple validation mechanism, which only checks the
space used in request string. From Table IV, we can find that the
set of effective payloads for SQLi01 in Web for Pentester and
SQLi04 in MCIR-SQLol forms 1.58% and 0.67% of the original
payload space, respectively. It is really a high portion of total
payloads compared to other vulnerability pages. When effective

payloads are common, both Random and ART4SQLi can easily
reveal SQLi vulnerabilities within a small time period, and there
may not exist great improvements from Random to ART4SQLi.

For the other two vulnerability pages in Web for Pentester and
Wooyun DVWA, the corresponding vulnerable pages only accept
input strings satisfying very complicated predefined structures.
Therefore, only a very small part of the payloads can be success-
fully injected. For example, there are only 40 effective payloads
in a total of 101 465 for SQLi05 of Web for Pentester. On the
contrary, if effective payloads are very rare, the cluster of ef-
fective payloads regresses to one or two small portions within
the original payload space, and it becomes more difficult for
ART4SQLi to reveal an SQLi vulnerability. This may explain
the four worst cases. Note that even in these cases, ART4SQLi
still produces a more than 13% improvement over Random.

5) Types of Effective Payloads: We further analyze the types
of the effective payloads found in each benchmark. There
are many ways to classify a vulnerability, such as injection
type, attack type, submission method, and information retrieval
means [26], [61], [67]. Halfond et al. [26] has summarized five
types of SQLi vulnerabilities for payloads. We show them as the
“Boolean-based blind,” “Error-based,” “Union query,” “Stacked
queries,” and “Time-based blind” columns in Table VIII. The
payloads belonging to no group are reported in the “Others”
column of the table.

Recall that we perform ART4SQLi on each vulnerable page
and repeat the testing process for ten times. We finally record
10× (7 + 7 + 15) = 290 effective payloads, investigate their
types, and report their statistics in Table VIII. If a payload can
be described by more than one type, we manually choose its
dominant type. Let us take the “Web for pentester” row and
the “Boolean-based blind” column to Illustrate. The number 16
denotes that there are 16 effective payloads of the “Boolean-
based blind” type. The other cells are similarly interpreted.

We further find that the payloads of type “Boolean-based
blind” form the smallest class, i.e., 63 out of 290. At the same
time, the payloads of type “Union query” form the largest class,
i.e., 26 out of 290. This is because that the two types of payloads

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

16 IEEE TRANSACTIONS ON RELIABILITY

have the simplest and most complicated structures, respectively.
As a result, the two types of payloads are the easiest and the
most difficult ones to synthesize, respectively.

G. Threats to Validity

The alternative strategies used to implement ART4SQLi may
put threats to the empirical observation on validating the effec-
tiveness of our basic proposal. This may relate to the details of
payload grammar and parsing tree, the distance formula adopted,
SQLi benchmarks, and the adaptive random strategy chosen. For
example, there exist other syntax processors (e.g., SOFIA [6]),
other distances (e.g., Jaccard [36]), other effectiveness metrics
(e.g., F-score [70]), other benchmarks (e.g., [2], [21]), and other
adaptive random strategies (e.g., restricted random testing [8]).
Cooperating them may result in different empirical observations.
On the other hand, the determination of arguments for the pro-
posed adaptive system may also result in different empirical
results. Chen et al. [11] observed that the effectiveness of the
adaptive system FSCS-ART can be significantly improved by
increasing FixedSize and suggested that 10 is close to the most
optimal setting [12]. Though there is no knowledge to guide the
choosing of the argument for different goals, we follow them
to use the suggested value 10. Although we find that effective
payloads tend to have sparse distribution and be clustered in the
payload collection based on limited data observation, the real
situation may be different from our empirical observation.

Other experiment settings can result in different empirical ob-
servations. For example, in our experiment, we apply the feature
vector extraction process on all the payloads from the payload
collection, rather than sampling the payload collection to es-
timate the payload space. We do that to make full use of the
payload information to reduce the sample bias. The preparation
of the payload collection is another impact factor. Our payload
is prepared according to our experiences and suggestions from
popular forums. We further equip time-based blind payloads in
our payload collection with the following considerations. Mod-
ern application servers often have the mechanism of recognizing
suspicious queries. Once the intention of an attack trial is real-
ized, an application may refuse to serve, slow down response,
or throw out misleading answers. As a result, the cost of exe-
cuting an attack may be higher than expected, and such a cost
should not be ignored in any case. In practice, the manner of
brute-force trying increases both attacking cost and the risk of
exposing the intention of the attackers. They thus have been
abandoned by popular attacking approaches [68]. To conduct an
SQLi vulnerability discovery study, we choose to simulate the
realistic environment.

The subject benchmarks can have impacts on the experiment
results. We select three widely used benchmarks to evaluate the
effectiveness of our proposal. However, our proposal shows in-
consistent effectiveness on various vulnerability pages included.
For example, we have discussed the worst cases found in the ex-
periments. In some empirical studies, both the worst cases and
the best cases are excluded from the statistics, however, we keep
all of them to reflect the properties of the benchmark. We foresee
that in practice such situations are not common. First, real-world

vulnerabilities are more sophisticated than the vulnerable pages
in the benchmarks. Usually, modern Web applications use some
existed filtering expressions, security functions, or third-party
modules, and it is quite often to have security issues. Second,
the worst case of Wooyun DVWA 2014, which defines very com-
plicated input data format but gives no validation mechanism,
is not common in practice. In realistic Web applications, such
complicated input format means significant functionality loss.
If a dynamic Web page is designed for indexing source codes
from user input (user input source file name), which satisfy the
format of “*.py,” such a Web application can only index python
sources. Such a designed method is not common, and will be
only adopted for special systems. Therefore, the worst cases in
the subjects will not stop ART4SQLi from being considerably
acceptable in practice. Even if the aforementioned situations in-
deed exist, the experiments suggest that ART4SQLi can still
manifest an observable improvements over Random. Although
the three benchmarks are also used to evaluate the effectiveness
of ART4SQLi, they represent limited types of vulnerability in
practice. Other benchmarks (e.g., [2]) not included in the bench-
mark may lead to different results.

From the experiment, we conclude that ART4SQLi comes
with acceptable additional cost in the Web applications, which
have similar characteristics to the benchmarks. In our experi-
ment, we let ART4SQLi store a payload string together with its
feature vector into a hash table. The keys of the hash table are
the original payload strings, and the value of each key is the
corresponding feature vector. We thus speed up the indexing of
the retrieving of payload during the payload selection process.
The process without such an acceleration may have different
timing results. At the same time, we also realize that the find-
ing of a farthest nearest payload may be further optimized by
branch-cutting search based on the distance metrics adopted.

V. RELATED WORK

Many existing techniques, such as input filtering, static anal-
ysis, runtime monitoring defensive coding, key words random-
ization, and security testing, can detect and prevent a subset of
the vulnerabilities that lead to SQLi. In this section, we list work
related to this paper.

A. SQLi Vulnerability Detection and Evaluation

The root cause of SQLi vulnerabilities is an insufficient input
validation. Thus, the most straightforward way is to set up an
input filtering proxy in front of Web applications. Howard and
LeBlanc [32] proposed a filtering proxy based on a blacklist,
which detects predefined SQLi key words in user inputs. If a
user input contains such keys, the request is blocked; otherwise,
it is considered safe. Although the filtering method is straightfor-
ward, it is too simple to block some complicated SQLi attacks,
as it can be easily bypassed via obfuscation methods [3].

Static analysis is also a popular security mechanism against
SQLi. Fu et al. [22] described a compile-time static SQLi analy-
sis framework, which can detect and block several kinds of SQLi
attacks, but is limited to the ASP.NET language. Huang et al. [34]
developed a static analysis platform. It detects input validation

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: ART4SQLi: THE ART OF SQL INJECTION VULNERABILITY DISCOVERY 17

related errors that use developer-provided annotations. Though
this static framework supports more types of injection attacks,
relying on developer-provided annotations limits the accuracy of
such methods. Wassermann and Su [74] proposed an approach
that used static analysis combined with automated reasoning to
verify that the SQL queries generated in the application layer
cannot contain a tautology. Their method is effective in finding
SQLi vulnerabilities from source code; however, a drawback of
their method is the limitation of supporting only tautological
type injections.

Due to the lack of runtime information, static analysis may
misreport SQLi vulnerabilities. In response, some researchers
have proposed runtime monitor mechanisms. Halfond and
Orso [25] offered an approach that combines static analysis
with a runtime monitor. In this approach, a static process builds
a legitimate queries model while dynamic part is responsible
for checking maliciousess. By combining the two techniques,
their method made the static analysis more reliable. However,
this combination approach is very complex, and may not scale
well to large applications. Halfond et al. [27] further proposed
a dynamic tainting technique against SQLi, which marks and
tracks certain data in a program at runtime, then identifies trusted
strings in an application and allows only these trusted strings to
be used to create certain parts of an SQL query. Buehrer et al. [5]
proposed an injection detection framework based on comparing,
at run time, the parse tree of the SQL statement before inclusion
of user input with that resulting after inclusion of input. Prakash
and Saravanan [55] proposed a mechanism based on static and
dynamic analysis methods. The proposed approach, SQLi de-
tection (SQLID), is introduced as an intermediate virtual layer
or database between the application and the database. Khalid
and Yousif [42] proposed a dynamic analysis tool for detecting
SQLi. Xiao et al. [77] proposed an approach for SQLID based
on behavior and the analysis of response and state of the Web
application under different attacks. These runtime monitoring
techniques perform better than black list based proxies. Because
they support advanced input analysis such as data tracing, some
SQLi attacks can be detected.

Recently, off-the-shelf runtime monitors such as application-
level intrusion detection systems [45], [54], and Web application
firewalls such as ModeSecurity6 have been released. However,
such advanced input analysis bring additional computing com-
plexity and require additional resources. When the request rate
is very high, such intermediate monitors will consume a large
amount of system resources [73]. On the other hand, Appelt
et al. [4] proposed a machine learning driven testing approach,
which can generate more effective test cases, in which the train-
ing process leads the generation process of more effective tests.
Singh [66] analyzed the detection and prevention using the clas-
sical methods as well as modern approaches.

ART4SQLi focuses on scheduling given payloads to reveal an
SQLi vulnerability issue as early as possible. Some other works
such as [1], [38], [41], and [50] also detect SQLi vulnerability.
Different from them, ART4SQLi is based on predefined payload
grammar. The experiment carried out in this paper evaluates only

6[Online]. Available: https://www.modsecurity.org/

SQLi issue. Nevertheless, the grammar of ART4SQLi can be
extended and has no limit on the types of vulnerability.

There exist popular ways to detect other vulnerabilities such
as buffer overflows, null pointer, and subscript out of bounds.
For example, Jovanovic et al. [38] proposed a static analysis
method. Xu et al. [78], [79] developed tools Melton and Cana-
lyze, which can detect memory leak for C programs. Godefroid
[23] proposed a framework to detect resource leaks in Android
applications, and developed the tool Relda. Compared with such
static analysis approaches, ART4SQLi is different in its dynamic
testing manner and interested vulnerability types.

B. Payload Grammar, Syntax Parsing, and Payload Mutants

Each SQLi payload can be regarded as a malicious string that
follows a specific string structure. Thus, it is feasible to define
a CFG for SQLi attacks [69]. A CFG [31] is a set of recur-
sive rewriting rules (or productions) used to generate patterns of
strings. For example, a CFG G can be defined by the 4-tuple:
G = (V,Σ, R, S). Here, V is a finite set, in which each element
v is called a nonterminal character or a variable. A variable (aka.
syntactic category) represents a different type of phrase or clause
in the sentence, defining a sub-language of the language defined
byG.Σ is a finite set of terminals, disjoint from V , which makes
up the actual content of the sentence. The set of terminals is the
alphabet of the language defined by the grammar G. R is a finite
relation from V to (V ∪ Σ)∗, where the asterisk represents the
Kleene star operation. The members ofR are called the (rewrite)
rules or productions of the grammar, and also commonly sym-
bolized by a P . S is the start variable (or start symbol), used to
represent the whole sentence (or program). It is also an element
of V .

Appelt et al. [4] proposed a CFG for three specific SQLi
attacks: BOOLEAN, UNION, and PIGGY, which aim at ma-
nipulating the intended logic, exploiting the family of union
queries, or injecting additional statements in the original SQL
queries [26]. This type of CFG covers most typical SQLi attacks.
Hashemi and Hwa [30] proposed using a parse tree to analyze
ungrammatical sentences. Kauchak et al. [40] showed how the
metrics can be used to understand grammar regularity in a broad
range of corpora. In this proposal, we stick to the formulation
by Strawson [69] to implement the payload grammar.

The scale of the payload collection makes an important role
in such an approaching. It is popular to mutate payloads to
generate new ones and the generalization of the method thus
relates to the description capability of the payload grammar.
Moreover, the grammar of payload in Fig. 5 is easy to general-
ize. For example, we can extend “opOR ::= or | || | . . . ;” to
“opOR ::= or | xor | || | . . . ;” to support the “XOR” operator
in MYSQL.

C. Adaptive Random Testing

ART is an improvement based on random testing [15]. It is
based on the observation that test cases revealing software fail-
ures tend to cluster together in the test case domain. It therefore
proposes to have randomly selected test cases being more evenly
spread throughout the input domain by employing the location

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

18 IEEE TRANSACTIONS ON RELIABILITY

information of the test cases, which have been executed but do
not reveal failures [11]. In this method, we approach in such a
direction to study the SQLi vulnerability discovery problem.

ART uses the distance among test cases to pick up the test
case candidate to quickly find the first test case that leads to fail-
ures. Many distance metrics [9], [18], [43] have been proposed
to compute the difference between test cases. The Euclidean dis-
tance focuses on the spatial distance between the samples rather
than the difference in sample characteristics. The cosine dis-
tance focuses on the difference in sample characteristics rather
than the spatial distance between the samples. In this paper, we
adopted the latter since payloads are represented by vectors in
a token space, and there is no scientific basis to manipulate dif-
ferent dimensions of such a space. Chen et al. [15] proposed an
adaptive sequence approach for object-oriented software (OOS)
test case prioritization. Qi et al. [56] studied the influence of the
distance calculation error on the performance of ART. Sinaga
et al. [65] analyzed the path coverage information for ART.

We realize that there are at least two key points determining
the successful adaptation of ART to SQLi vulnerability discov-
ery problem. The first is to find a suitable vectorization method
and distance function, in which payload space of the effective
payloads expose to cluster together as expected. The second is
to design a payload selection process so that a promising pay-
load, which is expected to be far from all the evaluated ones,
can be selected. Based on such understanding, we also expect to
cooperate other ART-related or ART-inspired optimization and
strategies to further boost our proposal.

The computational overhead of ART has been reported in pre-
vious studies. For example, Chan et al. [7], [9] tried to reduce
the overhead of ART to address its scalability issue. We are also
interested in integrating such mechanisms in ART4SQLi. On the
other hand, potential improvements to decrease the complexity
include cutting unpromising payloads in the construction of can-
didate set and caching payload distances in a candidate selection.

VI. CONCLUSION

SQL have been ranked as one of the most dangerous Web
application vulnerabilities. At the same time, dynamic meth-
ods such as black-box testing are regarded as one of the most
effective ways for detecting such vulnerabilities within Web ap-
plications before they are ready for servicing. However, their
performance may be limited due to the black-box nature and the
complexity of the problem, and has not been adequately studied.

In this paper, we designed a grammar for interested SQLi at-
tack payloads, and proposed ART4SQLi to accelerate the testing
process of manipulating attack payloads to reveal SQLi vulner-
abilities. ART4SQLi first decomposed each payload string into
tokens, and characterized each payload as a feature vector. In the
next stage, ART4SQLi selected a promising payload for evalua-
tion, by randomly generating a size-fixed candidate set from the
payload collection and picking out from it the one farthest to all
the evaluated payloads. When an SQLi vulnerability issue was
revealed by a payload, we marked the payload as an effective
one and let the process complete; otherwise, the evaluated set of
payloads was updated.

Experiments using three extensively adopted open-source
SQLi benchmarks showed the sparse and clustering distribution
of effective payloads, validated the effectiveness of our proposal,
and evaluated its practicability. On average, ART4SQLi showed
up to a 26% improvements over the original random testing
manner on Web for Pentester, DVWA 2014, and MCIR-SQLol
subjects, with acceptable additional computation costs.

In the future, we will transfer our methodology to other kinds
of testing-based injection vulnerability discovery problem. We
are also interested in cooperating other ART-related techniques
to further improve the solution to this problem.

REFERENCES

[1] N. Antunes and M. Vieira, “Detecting SQL injection vulnerabilities in
web services,” in Proc. 4th Latin-Am. Symp. Dependable Comput., 2009,
pp. 17–24.

[2] N. Antunes and M. Vieira, “Assessing and comparing vulnerability detec-
tion tools for web services: Benchmarking approach and examples,” IEEE
Trans. Services Comput., vol. 8, no. 2, pp. 269–283, Mar./Apr. 2015.

[3] D. Appelt, C. D. Nguyen, L. C. Briand, and N. Alshahwan, “Automated
testing for SQL injection vulnerabilities: An input mutation approach,” in
Proc. Int. Symp. Softw. Testing Anal., 2014, pp. 259–269.

[4] D. Appelt, C. D. Nguyen, and L. Briand, “Behind an application firewall,
are we safe from SQL injection attacks?” in Proc. 8th Int. Conf. Softw.
Testing, Verification, Validation, 2015, pp. 1–10.

[5] G. Buehrer, B. W. Weide, and P. A. Sivilotti, “Using parse tree validation
to prevent SQL injection attacks,” in Proc. 5th Int. Workshop Softw. Eng.
Middleware, 2005, pp. 106–113.

[6] M. Ceccato, C. D. Nguyen, D. Appelt, and L. Briand, “SOFIA: An au-
tomated security oracle for black-box testing of SQL-injection vulnera-
bilities,” in Proc. 31st IEEE/ACM Int. Conf. Automat. Softw. Eng., 2016,
pp. 167–177.

[7] K. P. Chan, T. Y. Chen, and D. Towey, “Adaptive random testing with
filtering: An overhead reduction technique,” in Proc. 17th Int. Conf. Softw.
Eng. Knowl. Eng., 2005, pp. 292–299.

[8] K. P. Chan, T. Y. Chen, and D. Towey, “Restricted random testing: Adaptive
random testing by exclusion,” Int. J. Softw. Eng. Knowl. Eng., vol. 16, no. 4,
pp. 553–584, 2006.

[9] K. P. Chan, T. Y. Chen, and D. Towey, “Forgetting test cases,” in Proc.
30th Annu. Int. Comput. Softw. Appl. Conf., 2006, pp. 485–494.

[10] T. Y. Chen, H. Leung, and I. Mak, “Adaptive random testing,” in Proc.
Annu. Asian Comput. Sci. Conf., 2004, pp. 320–329.

[11] T. Y. Chen, D. H. Huang, and F.-C. Kuo, “Adaptive random testing by
balancing,” in Proc. 2nd Int. Workshop Random Testing Co-Located 22nd
IEEE/ACM Int. Conf. Automat. Softw. Eng., 2007, pp. 2–9.

[12] T. Y. Chen, F.-C. Kuo, and H. Liu, “Adaptive random testing based
on distribution metrics,” J. Syst. Softw., vol. 82, no. 9, pp. 1419–1433,
2009.

[13] T. Y. Chen, F. C. Kuo, R. G. Merkel, and T. H. Tse, “Adaptive random
testing: The ART of test case diversity,” J. Syst. Softw., vol. 83, no. 1,
pp. 60–66, 2010.

[14] T. Y. Chen, F. C. Kuo, D. Towey, and Z. Q. Zhou, “A revisit of three
studies related to random testing,” Sci. China Inf. Sci., vol. 58, no. 5,
pp. 052104:1–052104:9, 2015.

[15] J. Chen et al., “An adaptive sequence approach for OOS test case pri-
oritization,” in Proc. IEEE Int. Symp. Softw. Rel. Eng. Workshops, 2016,
pp. 205–212.

[16] J. Chen, F. C. Kuo, T. Y. Chen, D. Towey, C. Su, and R. Huang, “A
similarity metric for the inputs of OO programs and its application in
adaptive random testing,” IEEE Trans. Rel., vol. 66, no. 2, pp. 373–402,
Jun. 2017.

[17] J. Chen et al., “Test case prioritization for object-oriented software: An
adaptive random sequence approach based on clustering,” J. Syst. Softw.,
vol. 135, pp. 107–125, 2018.

[18] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer, “ARTOO: Adaptive random
testing for object-oriented software,” in Proc. ACM/IEEE 30th Int. Conf.
Softw. Eng., 2008, pp. 71–80.

[19] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test case prioritization:
A family of empirical studies,” IEEE Trans. Softw. Eng., vol. 28, no. 2,
pp. 159–182, Feb. 2002.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: ART4SQLi: THE ART OF SQL INJECTION VULNERABILITY DISCOVERY 19

[20] I.A. Elia, J. Fonseca, and M. Vieira, “Comparing SQL injection detection
tools using attack injection: An experimental study,” in Proc. 21st Int.
Symp. Softw. Rel. Eng., 2010, pp. 289–298.

[21] J. Fonseca, M. Vieira, and H. Madeira, “Testing and comparing web vul-
nerability scanning tools for SQL injection and XSS attacks,” in Proc. 13th
Pacific Rim Int. Symp. Dependable Comput., 2007, pp. 365–372.

[22] X. Fu, X. Lu, B. Peltsverger, S. Chen, K. Qian, and L. Tao, “A static
analysis framework for detecting SQL injection vulnerabilities,” in Proc.
31st Annu. Int. Comput. Softw. Appl. Conf., 2007, pp. 87–96.

[23] P. Godefroid, “Random testing for security: Blackbox vs. whitebox
fuzzing,” in Proc. 2nd Int. Workshop Random Testing Co-Located 22nd
IEEE/ACM Int. Conf. Automat. Softw. Eng., 2007, pp 1–1.

[24] C. Guo, J. Zhang, J. Yan, Z. Zhang, and Y. Zhang, “Characterizing and
detecting resource leaks in Android applications,” in Proc. 28th IEEE/ACM
Int. Conf. Automat. Softw. Eng., 2013, pp. 389–398.

[25] W. G. Halfond and A. Orso, “Amnesia: Analysis and monitoring for neu-
tralizing SQL-injection attacks,” in Proc. 20th IEEE/ACM Int. Conf. Au-
tomat. Softw. Eng., 2005, pp. 174–183.

[26] W. G. Halfond, J. Viegas, and A. Orso, “A classification of SQL-injection
attacks and countermeasures,” in Proc. IEEE Int. Symp. Secure Softw. Eng.,
2006, pp. 65–81.

[27] W. G. Halfond, A. Orso, and P. Manolios, “Using positive tainting and
syntax-aware evaluation to counter SQL injection attacks,” in Proc. 14th
ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2006, pp. 175–185.

[28] W. G. Halfond and A. Orso, “Detection and prevention of SQL injection
attacks,” in Malware Detection. New York, NY, USA: Springer, 2007,
pp. 85–109.

[29] P. Hanks, Lexical Analysis: Norms and Exploitations. Cambridge, MA,
USA: MIT Press, 2013.

[30] H. B. Hashemi and R. Hwa, “Parse tree fragmentation of ungram-
matical sentences,” in Proc. 25th Int. Joint Conf. Artif. Intell., 2016,
pp. 2796–2802.

[31] J. E. Hopcroft, R. Motwani, and J. D. Ullman, “Introduction to automata
theory, languages, and computation,” ACM SIGACT News, vol. 32, no. 1,
pp. 60–65, 2001.

[32] M. Howard and D. LeBlanc, Writing Secure Code. London, U.K.: Pearson
Education, 2002.

[33] Y. Huang et al., “A mutation approach of detecting SQL injection vulner-
abilities,” in Proc. Int. Conf. Cloud Comput. Security, 2017, pp. 175–188.

[34] Y. W. Huang, F. Yu, C. Hang, C. H. Tsai, D. T. Lee, and S. Y. Kuo, “Securing
web application code by static analysis and runtime protection,” in Proc.
13th Int. Conf. World Wide Web, 2004, pp. 40–52.

[35] IMPERVA, “Web application attack report (WAAR),” 2015. [Online].
Available: https://www.imperva.com/defensecenter/waar

[36] P. Jaccard, “The distribution of the flora in the alpine zone,” Int. J. Comput.,
Electr., Autom., Control Inf. Eng., vol. 11, no. 2, pp. 37–50, 1912.

[37] B. Jiang and W. K. Chan, “Input-based adaptive randomized test case
prioritization: A local beam search approach,” J. Syst. Softw., vol. 105,
pp. 91–106, 2015.

[38] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A static analysis tool for
detecting web application vulnerabilities,” in Proc. IEEE Symp. Security
Privacy, 2006, pp. 1–6.

[39] D. Kar, S. Panigrahi, and S. Sundararajan, “SQLiDDS: SQL injection
detection using document similarity measure,” J. Comput. Security, vol. 24,
no. 4, pp. 507–539, 2016.

[40] D. Kauchak, G. Leroy, and A. Hogue, “Measuring text difficulty using
parse-tree frequency,” J. Assoc. Inf. Sci. Technol., vol. 68, no. 9, pp. 2088–
2100, 2017.

[41] K. Kemalis and T. Tzouramanis, “SQL-IDS: A specification-based ap-
proach for SQL-injection detection,” in Proc. ACM Symp. Appl. Comput.,
2008, pp. 2153–2158.

[42] A. Khalid and M. M. Yousif, “Dynamic analysis tool for detecting SQL
injection,” Int. J. Comput. Sci. Inf. Security, vol. 14, no. 2, pp. 224–232,
2016.

[43] B. Lei et al., Classification, Parameter Estimation and State Estimation:
An Engineering Approach Using MATLAB. New York, NY, USA: Wiley,
2017.

[44] P. Li et al., “Application of hidden Markov model in SQL injection detec-
tion,” in Proc. 41st Annu. Comput. Softw. Appl. Conf., 2017, pp. 578–583.

[45] J.-C. Lin and J.-M. Chen, “The automatic defense mechanism for malicious
injection attack,” in Proc. 7th IEEE Int. Conf. Comput. Inf. Technol., 2007,
pp. 709–714.

[46] H. Liu, F. C. Kuo, D. Towey, and T. Y. Chen, “How effectively does
metamorphic testing alleviate the oracle problem?” IEEE Trans. Softw.
Eng., vol. 40, no. 1, pp. 4–22, Jan. 2014.

[47] J. Makhoul, F. Kubala, R. Schwartz, and R. Weischedel, “Performance
measures for information extraction,” in Proc. DARPA Broadcast News
Workshop, 1999, pp. 249–252.

[48] C. Mao, T. Y. Chen, and F. C. Kuo, “Out of sight, out of mind: A distance-
aware forgetting strategy for adaptive random testing,” Sci. China Inf. Sci.,
vol. 60, no. 9, 2017, Art. no. 092106.

[49] C. Mao and X. Zhan, “Towards an improvement of bisection-based adap-
tive random testing,” in Proc. 24th Asia-Pacific Softw. Eng. Conf., 2017,
pp. 689–694.

[50] C. Mao and X. Zhan, “An approach for SQL injection vulnerabil-
ity detection,” in Proc. 6th Int. Conf. Int. Technol., 2009, pp. 1411–
1414.

[51] C. Nie, H. Wu, X. Niu, F. C. Kuo, H. Leung, and C. J. Colbourn, “Combi-
natorial testing, random testing, and adaptive random testing for detecting
interaction triggered failures,” Inf. Softw. Technol., vol. 62, pp. 198–213,
2015.

[52] K. Nigam, J. Lafferty, and A. McCallum, “Using maximum entropy for
text classification,” in Proc. Workshop Mach. Learn. Inf. Filtering, 1999,
vol. 1, pp. 61–67.

[53] L. Nyffenegger, “Web for pentester,” 2015. [Online]. Available:
https://www.pentesterlab.com

[54] T. Pietraszek and C. V. Berghe, “Defending against injection attacks
through context-sensitive string evaluation,” in Proc. Int. Workshop Re-
cent Adv. Intrusion Detection, 2005, pp. 124–145.

[55] J. Prakash and G. Saravanan, “SQLID: SQL injection detection based on
static and dynamic analysis,” Transylvanian Rev., vol. 1, 2016.

[56] Y. Qi, Z. Wang, and Y. Yao, “Influence of the distance calculation error
on the performance of adaptive random testing,” in Proc. Int. Conf. Softw.
Quality, Rel. Security Companion, 2017, pp. 316–319.

[57] E. Raymond, “The cathedral and the bazaar,” Knowl., Technol. Policy,
vol. 12, no. 3, pp. 23–49, 1999.

[58] A. Riancho, “W3AF-web application attack and audit framework,” World
Wide Web Electronic Publication, vol. 21, 2011.

[59] E. S. Ristad and P. N. Yianilos, “Learning string-edit distance,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 20, no. 5, pp. 522–532,
May 1998.

[60] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Test case prioriti-
zation: An empirical study,” in Proc. IEEE Int. Conf. Softw. Maintenance,
1999, pp. 179–188.

[61] S. M. S. Sajjadi and B. T. Pour, “Study of SQL injection attacks and
countermeasures,” Int. J. Comput. Commun. Eng., vol. 2, no. 5, pp. 539–
543, 2013.

[62] Y. Sasaki, “The truth of the F-measure,” Teach. Tutor. Mater., vol. 1, no. 5,
pp. 1–5, 2007.

[63] R. S. Scowen, “Generic base standards,” in Proc. IEEE Software Eng.
Standards Symp., 1993, pp. 25–34.

[64] H. Shahriar and M. Zulkernine, “Music: Mutation-based SQL injection
vulnerability checking,” in Proc. 8th Int. Conf. Quality Softw., 2008,
pp. 77–86.

[65] A. M. Sinaga, O. D. Hutajulu, R. T. Hutahaean, and I. C. Hutagaol, “Path
coverage information for adaptive random testing,” in Proc. Int. Conf. Inf.
Technol., 2017, pp. 248–252.

[66] J. P. Singh, “Analysis of SQL injection detection techniques,” 2016, arXiv
preprint arXiv:1605.02796.

[67] S. Som, S. Sinha, and R. Kataria, “Study on SQL injection attacks: Mode
detection and prevention,” Int. J. Eng. Appl. Sci. Technol., vol. 1, no. 8,
pp. 23–29, 2016.

[68] D. Stiawan, S. Sandra, E. Alzahrani, and R. Budiarto, “Comparative anal-
ysis of K-means method and Naive Bayes method for brute force at-
tack visualization,” in Proc. IEEE Int. Conf. Anti-Cyber Crimes, 2017,
pp. 177–182.

[69] P. F. Strawson, Subject and Predicate in Logic and Grammar. Abingdon,
U.K.: Routledge, 2017.

[70] C. J. Van Rijsbergen, Information Retrieval. London, U.K.: Butterworths,
1979.

[71] E. A. A. Vega, A. L. S. Orozco, and L. J. G. Villalba, “Benchmarking
of pentesting tools,” Int. J. Comput., Electr., Autom., Control Inf. Eng.,
vol. 11, no. 5, pp. 590–593, 2017.

[72] M. Vieira, N. Antunes, and H. Madeira, “Using web security scanners
to detect vulnerabilities in web services,” in Proc. IEEE/IFIP Int. Conf.
Dependable Syst. Netw., 2009, pp. 566–571.

[73] C. Wang, D. Zhang, H. Lu, J. Zhao, Z. Zhang, and Z. Zheng, “An ex-
perimental study on firewall performance: Dive into the bottleneck for
firewall effectiveness,” in Proc. 10th Int. Conf. Inf. Assurance Security.,
2014, pp. 71–76.

https://www.imperva.com/defensecenter/waar
https://www. pentesterlab.com

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

20 IEEE TRANSACTIONS ON RELIABILITY

[74] G. Wassermann and Z. Su, “An analysis framework for security in web ap-
plications,” in Proc. FSE Workshop Specification Verification Component-
Based Syst., 2004, pp. 70–78.

[75] G. Wei, “Some cosine similarity measures for picture fuzzy sets and their
applications to strategic decision making,” Informatica, vol. 28, no. 3,
pp. 547–564, 2017.

[76] P. Wood, B. Nahorney, K. Chandrasekar, S. Wallace, and K. Haley,
“Symantec global internet security threat report,” White Paper, Syman-
tec Enterprise Security, vol. 21, 2016.

[77] Z. Xiao, Z. Zhou, W. Yang, and C. Deng, “An approach for SQL injection
detection based on behavior and response analysis,” in Proc. 9th Int. Conf.
Commun. Softw. Netw., 2017, pp. 1437–1442.

[78] Z. Xu, J. Zhang, and Z. Xu, “Melton: A practical and precise memory
leak detection tool for C programs,” Frontiers Comput. Sci., vol. 9, no. 1,
pp. 34–54, 2015.

[79] Z. Xu, J. Zhang, Z. Xu, and J. Wang, “Canalyze: A static bug-finding
tool for C programs,” in Proc. Int. Symp. Softw. Testing Anal., 2014,
pp. 425–428.

[80] X. Yuan, I. Williams, T. H. Kim, J. Xu, H. Yu, and J. H. Kim, “Evalu-
ating hands-on labs for teaching SQL injection: A comparative study,”
J. Comput. Sci. Colleges, vol. 32, no. 4, pp. 33–39, 2017.

[81] X. Zhang, X. Xie, and T. Y. Chen, “Test case prioritization using adaptive
random sequence with category-partition-based distance,” in Proc. IEEE
Int. Conf. Softw. Qual., 2016, pp. 374–385.

Long Zhang received the bachelor’s degree in computer science and technology
from the Hefei University of Technology, Hefei, China, in 2012. He is currently
working toward the Ph.D. degree in computer software and theory with the
University of Chinese Academy of Sciences, Beijing, China.

He is also with the State Key Laboratory of Computer Science, Institute of
Software, Chinese Academy of Sciences, Beijing, China. His research interests
include program debugging and program verification.

Donghong Zhang received the bachelor’s degree in computer science and tech-
nology from Harbin Engineering University, Harbin, China, in 2015, and the
master’s degree in computer software and theory from the State Key Laboratory
of Computer Science, Institute of Software, Chinese Academy of Sciences, Bei-
jing, China, in 2018.

He is an Engineer with the First Research Institute, Ministry of Public Secu-
rity, Beijing, China. His research interests include security and software testing.

Chenghong Wang received the bachelor’s and master’s degrees from Harbin
Engineering University, Harbin, China, and Syracuse University, Syracuse, NY,
USA, respectively.

He is a Research Scholar with the Department of Biomedical Informatics,
University of California San Diego, La Jolla, CA, USA. His research interests in-
clude secure computation, privacy-preserving computing, applied cryptography,
security testing, vulnerability discovery, and security applications in precision
medicine and genome wide association studies.

Jing Zhao received the Ph.D. degree from the Harbin Institute of Technology,
Harbin, China.

She is a Professor with the School of Software Technology, Dalian University
of Technology, Dalian, China. She has published research results in venues such
as IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, ACM Jour-
nal on Emerging Technologies in Computing, Journal of Systems and Software,
and Practice and Experience (PE). Her research interests include dependable
software, software testing, and combinatorial testing.

Zhenyu Zhang received bachelor’s and master’s degrees from Tsinghua Uni-
versity, Beijing, China, and the Ph.D. degree from the University of Hong Kong,
Hong Kong.

He is an Associate Professor with the State Key Laboratory of Computer Sci-
ence, Institute of Software, Chinese Academy of Sciences, Beijing, China, since
2011. He has published research results in venues such as IEEE TRANSACTIONS

ON SOFTWARE ENGINEERING (TSE), IEEE TRANSACTIONS ON SERVICE COM-
PUTING (TSC), IEEE TRANSACTIONS ON RELIABILITY (TREL), Computer, In-
ternational Conference on Software Engineering (ICSE), ACM SIGSOFT Sym-
posium on the Foundation of Software Engineering (FSC), International Con-
ference on Automated Software Engineering (ASE), and International World
Wide Web (WWW) conferences. His research interests include debugging and
testing for software and systems.

