

Adaptively Generating High Quality Fixes for Atomicity Violations
Yan Cai †

State Key Laboratory of Computer
Science, Institute of Software, Chinese
Academy of Sciences, Beijing, China

ycai.mail@gmail.com

Lingwei Cao

State Key Laboratory of Computer Science, Institute of
Software, Chinese Academy of Sciences, and
University of Chinese Academy of Sciences,

Beijing, China
lingweicao@gmail.com

Jing Zhao

School of Computer Science and
Technology, Harbin Engineering

University, Harbin, China
jingzhao.duke@gmail.com

ABSTRACT
It is difficult to fix atomicity violations correctly. Existing gate
lock algorithm (GLA) simply inserts gate locks to serialize execu-
tions, which may introduce performance bugs and deadlocks.
Synthesized context-aware gate locks (by Grail) require complex
source code synthesis. We propose Fixer to adaptively fix ato-
micity violations. It firstly analyses the lock acquisitions of an
atomicity violation. Then it either adjusts the existing lock scope
or inserts a gate lock. The former addresses cases where some
locks are used but fail to provide atomic accesses. For the latter, it
infers the visibility (being global or a field of a class/struct) of the
gate lock such that the lock only protects related accesses. For
both cases, Fixer further eliminates new lock orders to avoid
introducing deadlocks. Of course, Fixer can produce both kinds
of fixes on atomicity violations with locks. The experimental re-
sults on 15 previously used atomicity violations show that: Fixer
correctly fixed all 15 atomicity violations without introducing
deadlocks. However, GLA and Grail both introduced 5 deadlocks.
HFix (that only targets on fixing certain types of atomicity viola-
tions) only fixed 2 atomicity violations and introduced 4 dead-
locks. Fixer also provides an alternative way to insert gate locks
(by inserting gate locks with proper visibility) considering fix
acceptance.

CCS CONCEPTS
• Software and its engineering ➝ Software testing and de-
bugging • Theory of computation➝Program verification.

KEYWORDS
Atomicity violations, fix, repair, concurrency bugs, deadlock,
multithreaded program, lock order

ACM Reference format:

Yan Cai, Lingwei Cao, and Jing Zhao. 2017. Adaptively Generat-
ing High Quality Fixes for Atomicity Violations. In Proceedings of
11th Joint Meeting of the European Software Engineering Confer-
ence and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering, Paderborn, Germany, September 4-8 2017

(ESEC/FSE'17), 12 pages. http://dx.doi.org/10.1145/3106237.3106239

1. INTRODUCTION
Concurrency bugs widely exist in multithreaded programs [3][10]
[19][22][25][30][32][38][48][57]. They are difficult to detect and
to reproduce [8][47][53][60], as well as to correctly fix [29].

Manual bug fixing not only takes a long time [22] but also is
error-prone [58]. Recently, automated bug fixing becomes popu-
lar [9][14][15][16][28][36][40][43]. However, almost all existing
techniques on fixing concurrency bugs insert new locks (known
as gate locks) statically or dynamically to serialize all executions
of threads involved in a concurrency bug, including AFix [22][23],
Axis [34], Grail [37], Gadara [51], and [41]. As the inserted gate
locks prevent two or more threads from executing concurrently,
the original incorrect thread interleaving is eliminated. We refer
to the techniques that insert gate locks as Gate Lock Algorithms
(GLA). However, introducing gate locks may introduce perfor-
mance bugs [21] as they always serialize threads of the targeted
concurrency bugs. To solve it, Grail inserts synthesized gate locks:
it maps the hash values of the variables from the concurrency
bugs to unique gate locks. However, the synthesized gate locks
may sometimes reduce fix acceptance.

Besides, introducing gate locks (e.g., GLA) or modifying lock
scopes (e.g., HFix [35]) may introduce various deadlocks [34]
[37][41]. This is common even for manual bug fixing (e.g., 16.4%
incorrect fixes indeed introduced new deadlocks [58]). If dead-
locks are introduced, Axis [34] further iteratively fixes these in-
troduced deadlocks by inserting more gate locks. Grail [37] im-
proves AFix and Axis by adopting Petri-net analysis to avoid
introducing deadlocks [51]. However, Grail is limited to analyse
two threads only [37]. Hence, Grail fails to avoid introducing
deadlocks involving other threads out of the targeted concurrency
bugs [6]. HFix [35] targets on fixing a subset of atomicity viola-
tions by modifying lock scopes. It may also introduce perfor-
mance issues.

A recent work named DFixer [6] introduces lock pre-
acquisitions to fix deadlocks. As deadlocks involve high-level lock
acquisitions, it is possible to avoid introducing deadlocks by elim-
inating new lock orders [6]. However, atomicity violations in-
volve low level memory accesses. They may involve lock acquisi-
tions protecting some of their accesses or may involve no lock. In
the latter case, gate locks might be necessary; however, in the
former case, gate locks together with existing lock acquisitions
may form deadlocks. Hence, it is more difficult to correctly fix
atomicity violations. Hence, many existing techniques differenti-
ate concurrency bugs as deadlock and non-deadlock bugs
[38][42][49][61] as they require different techniques to detect and
to fix.

† Corresponding author.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions@acm.org.

ESEC/FSE'17, September 04-08, 2017, Paderborn, Germany
© 2017 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5105-8/17/09…$15.00
http://dx.doi.org/10.1145/3106237.3106239

303

ESEC/FSE'17, September 4-8 2017, Paderborn, Germany Y. Cai, L. Cao, and J. Zhao

In this paper, we focus on atomicity violations. An atomicity
violation occurs if an expected atomic set of memory accesses
fails to be atomic [38][52]. For example, Figure 1(a) shows an
atomicity violation: two accesses to a pointer p from thread t1 can
be interleaved by a write access from thread t2 (as indicated by
two solid arrows), resulting in a NPE error (NULL Pointer Excep-
tion). To fix such atomicity violations, existing works may intro-
duce various problems (as discussed above, also see Section 2).

We propose an adaptive approach to fix atomicity violations,
known as AlphaFixer or Fixer for short. Given an atomicity vio-
lation, Fixer firstly identifies all involved lock acquisitions in it.
If most of the accesses of the atomicity violation are protected by
the same lock, Fixer then tries to fix it by either extending an
existing lock scope or combining two existing lock scopes to pro-
vide an atomic region to put all accesses under the protection of
the same lock. Otherwise, Fixer inserts a gate lock to fix it. In
the latter case, Fixer further infers the visibility1 of the gate lock
in order to exactly protect the related accesses that may be in-
volved in the atomicity violations. To guarantee a deadlock-free
fix, Fixer conservatively restricts its lock scope extension or
combination into three cases (see Section 3). If necessary, Fixer
adopts multiple lock acquisitions (i.e., to acquire multiple locks) at
a time to eliminate new lock orders.

We have implemented Fixer for C/C++ programs and evalu-
ated it on 15 atomicity violations. We compared Fixer with
GLA, Grail, and HFix where HFix is designed to fix certain types
of concurrency bugs. The evaluation is on the following three
aspects: correctness2, performance and code readability. For per-
formance, we followed the approach [37] for comparison purpose.
The experiment results show that: (1) Fixer fixed all 15 atomicity
violations correctly without introducing any deadlock. However,
both GLA and Grail introduced 5 deadlocks; HFix was only ap-
plicable to fix 6 atomicity violations but introduced 4 deadlocks.
(2) Fixer only incurred 21.1% overhead on average; however,
GLA, Grail, and HFix incurred a significantly larger overhead:
120.2%, 82.9% and 32.5%, respectively. (3) Fixer also provided a
new way to insert gate lock considering the visibility of the vari-
ables in the given atomicity violation, which is an alternative way
to improve fix acceptance. The main contributions of this paper
are as follows:

 It proposes a new strategy Fixer to adaptively fix atomici-
ty violations by producing more effective and efficient fix-
es. Fixer can insert gate locks to fix atomicity violations.
However, it is able to infer the visibility of the gate lock to
provide an alternative way to improve the acceptance of
fixes.

 We have implemented a prototype tool to evaluate Fixer
(http://lcs.ios.ac.cn/~yancai/alphafixer). The experiment re-
sults demonstrate the effectiveness and efficiency of Fixer
compared with existing works.

1 In this paper, the visibility of a variable means that whether it is a global
variable or a class/struct field. For the latter case, a variable is accessed
based on an instance of its class/struct.
2 To fix concurrency bugs, thread interleaving space is usually reduced to
be a subset of that before fixing if no deadlock is introduced. Therefore,
the correctness here refers to whether any deadlock is introduced.

2. BACKGROUND AND MOTIVATIONS

2.1 Preliminaries
We focus on two kinds of events in multithreaded programs:
Memory accesses and Lock operations. The later includes lock ac-
quisitions acq(m), tryAcq(m), acq(m, n) and lock release rel(m).
Note that (1) acq(m) blocks its executing thread if lock m is ac-
quired by another thread; but tryAcq(m) does not; (2) acq(m, n)
indicates that a thread tries to acquire two locks at the same time.

If a thread firstly acquires a lock m and then acquires another
lock n before releasing lock m, there is a lock order from lock m to
lock n, denoted by m ↝ n. If another lock order exists n ↝ m (or n
↝ … ↝ m for multiple threads), we say it is a reversed lock order of
the lock order m ↝ n. There is a special case that, if a thread ac-
quires two locks m and n at the same time via acq(m, n), then
there is no lock order produced between the two locks. This is
because a thread performing acq(m, n) immediately releases any
acquired lock if one of them cannot be acquired [6].

A (resource) deadlock occurs if a lock order and its reversed
lock order occurs at the same time [7][25]. But, the absence of a
lock order and its reversed lock order indicates no deadlock on
these locks.

2.2 Motivations
GLA fixes an atomicity violation by inserting a gate lock to seri-
alize the executions of the involved threads. It could reduce the
parallelism of executions from different threads due to over syn-
chronization (known as performance bugs [21]) and may also
introduce deadlocks. Grail may improve performance but may
produce fixes with low acceptance due to its lock synthesis.
Overall, these works focus on the correctness of their fixes but
seldom consider the quality (e.g., whether the fix code is
acceptable and understandable to developers) of their fixes. This
point is extremely important when a program is developed by
many developers and is developed continually to produce
different versions (e.g., MySQL). We show these limitations in the
next two subsections with examples.

2.2.1 Performance and Acceptance of Fixes. Atomicity viola-
tion AV1: Figure 2 shows an atomicity violation AV1. It involves
two threads (t1 and t2) and two variables (buf->output and buf-
>outcnt). The variable buf->output is a fixed size buffer and the
variable buf->outcnt points to the end of buf->output. Please ig-
nore the four highlighted lines starting with "+" (i.e., lines 3, 7, 11,
and 15) for now. The function ap_bufferred_log_writer() buffers
characters into buf->output and then increments buf->outcnt.
However, these two operations are not protected by any lock. As
a result, if two or more threads concurrently call the function and
the executions of two threads could be interleaved as what the

(a)

Thread t2

p=NULL;

Thread t1

p = new Obj ();

p.test();

(b)

Thread t2

+ acq(G)

p=NULL;

+ rel(G)

Thread t1

+ acq(G)

p = new Obj();

p.test();

+ rel(G)

Figure 1. An atomicity violation (a) and its fix by GLA (b).

304

Adaptively Generating High Quality Fixes for Atomicity Violations ESEC/FSE'17, September 4-8 2017, Paderborn, Germany

two solid arrows indicate, an atomicity violation will occur, cor-
rupting both buf->output and buf->outcnt.

Atomicity violation AV2: Figure 3 shows an atomicity viola-
tion AV2, involving one variable gCurrScript. The atomicity viola-
tion occurs when thread t2 writes a NULL value to gCurrScript in
between the write to gCurrScript (at line 4) and the invocation of
compile() on gCurrScript (at line 10) by thread t1, as indicated by
the two solid arrows. Although the original program contains a
lock l (at lines 1, 6, 8, 13, 14, 20) to protect accesses to gCurrScript,
this protection is only on the individual access. It fails to provide
an atomic region for two accesses to gCurrScript from thread t1.

To fix AV1, GLA inserts a lock G to serialize two threads. This
fix is shown in lines starting with "+" (i.e., lines 3, 7, 11, and 15).
To fix AV2, GLA inserts a lock G (at lines 3, 11, 16, and 18) to
prevent the write to gCurrScript (at line 17) from occurring in
between the two accesses by thread t1.

GLA may introduce high runtime overhead. For example, on
AV1, if the variable bufs of two threads are different, then the two
variables buf->output of two threads are also different. Hence, no
atomicity violation may occur and the two threads can be execut-
ed concurrently. However, after fixed by GLA, the two threads
always execute sequentially due to the unique global gate lock G,
incurring runtime overhead.

The latest work Grail [37] follows GLA, but synthesizes a
context-aware gate lock G according to all variables of the target-
ed atomicity violation as follows:

G = contextL(hash(v1), hash(v2) …), where v1, v2, … are variables
from the atomicity violation and the function contextL(…) returns
a unique lock corresponding to the inputs (i.e., the hash values of
all variables). Thus, if the actual variables of two threads are dif-
ferent, Grail computes two different gate locks. Hence, the two
threads are able to execute concurrently. In this way, Grail does
not reduce parallelism if no atomicity violation may occur. Figure
4 shows the two gate locks generated by Grail to fix AV1 and AV2,
respectively. However, there are three main limitations of Grail.

Firstly, the readability of fix by Grail might be worse than that
by GLA. For example, on fixing AV1 and AV2, the inserted lock
acquisition by GLA is simply "acq(G)" where the lock G is global-
ly defined once. Whereas, the gate lock inserted by Grail are: "G =
contexL(hash(&(buf->outcnt)), hash(&(buf->output))); acq(G);" and
"G = contextL(hash(&(gCurrScript))); acq(G);", respectively. These
fixes may be difficult for developers to understand.

Secondly, a synthesized context-aware lock may not be always
required. If an atomicity violation involves only global variables

(e.g., on AV2), a global lock is enough. In this case, even if the gate
lock is produced by Grail, the produced gate locks will always be
the same. Otherwise, if an atomicity violation involves class (in-
cluding struct) level variables, a gate lock of the same class level
will be enough (e.g., on AV1).

Thirdly, the implementation of contextL(…) might be complex.
For example, the original implementation [37] uses String.intern()
function provided by native code of JDK. This implementation
maintains a HashTable structure and a lock to protect operations
on it. On each call to String.intern(), the HashTable is iterated to
search for a unique String object (which is taken as a lock in Java,
see the function JVM_InternString in jvm.cpp). For C/C++, a simi-
lar pair of map/table and lock is also required.

Considering above discussions, the fixes generated by Grail
may have a low acceptance to developers. Of course, different
developers may hold different views on what kind of fixes they
may prefer to accept.

2.2.2 Introducing Deadlocks. On AV1, GLA inserts a lock G to
serialize two threads. This is a correct fix. However, on AV2, after
GLA inserts a lock, it also introduces three new lock orders: two l
↝ G (i.e., from line 14 to line 16 and from line 1 to line 3) and one
G ↝ l (from line 3 to line 8), as shown in three dotted arrows. The
two lock orders l ↝ G (i.e., from line 14 to line 16) and G ↝ l (from
line 3 to line 8) form a deadlock. (Actually, another deadlock is
introduced from two locks orders l ↝ G (from line 1 to line 3) and
G ↝ l (from line 3 to line 8) if they can be formed by multiple
threads at the same time.)

Grail further relies on Petri-net analysis to prevent introduc-
ing deadlocks, which is limited to two threads only [37].

For some special atomicity violations like AV2 where the same
lock (e.g., lock l) is used to protect part of accesses, a recent work
HFix [35] suggests a fix: move either an acquisition or a release

Thread t1

1. ap_buffered_log_writer(...)

2. {

3. + acq(G);

4. idx = buf->outcnt;

5. s = &buf->output[idx];

6. buf->outcnt += len;

7. + rel(G);

8. }

Thread t2

9. ap_buffered_log_writer(...)

10. {

11. + acq(G);

12. idx = buf->outcnt;

13. s = &buf->output[idx];

14. buf->outcnt += len;

15. + rel(G);

16. }

struct buffered_log{

apr_size_t outcnt;

char outbuf[…];

};

Figure 2. An atomicity violation AV1 from apache with

bugID=25520, and a fix to it by GLA.

Thread t1

1. acq(l);

2. …

3. + acq(G);

4. gCurrScript = …;

5. …

6. rel(l);

7. …

8. acq(l);

9. …

10. gCurrScript->compile();

11. + rel(G);

12. …

13. rel(l);

Thread t2

14. acq(l);

15. …

16. + acq(G);

17. gCurrScript = NULL;

18. + rel(G);

19. …

20. rel(l);

Figure 3. An atomicity violation AV2 from mozilla [59] and its

fix by GLA.

Thread t2

acq(l);

…

+ G = contextL(

hash(&(gCurrScript)));

+ acq(G);

gCurrScript = NULL;

+ rel(G);

…

rel(l);

Thread t2

ap_buffered_log_writer(...) {

+ G = contextL(

hash(&(buf->outcnt)),

hash(&(buf->output)));

+ acq(G);

idx = buf->outcnt;

s = &buf->output[idx];

buf->outcnt += len;

+ rel(G);

} (a) (b)
Figure 4. The two gate locks genearted by Grail to fix AV1 (a)

and AV2 (b).

305

ESEC/FSE'17, September 4-8 2017, Paderborn, Germany Y. Cai, L. Cao, and J. Zhao

statement to protect all other accesses not protected by the same
lock. On AV2, HFix may either move rel(l) at line 6 to a location
right after line 10 or move acq(l) at line 8 right before line 4.
However, this fix actually introduces a self-deadlock as thread t1
will acquire lock l twice where the second acquisition is blocked.
Besides, it may still introduce other deadlocks. For example, if
there is a lock acquisition acq(m) between lines 4 and 10, a new
lock order l ↝ m will be introduced. Then a deadlock is intro-
duced if another thread forms a lock order m ↝ l.

3. OUR APPROACH

3.1 Rationale and Overview
An atomicity violation involves at least three accesses to a set of
shared variables. It is possible that these accesses are protected by
some locks (e.g., on AV2). But it is also possible that no lock pro-
tects the involved accesses (e.g., on AV1).

Therefore, our insight is: it is not always necessary to intro-
duce new locks to serialize threads to fix atomicity violations. If
there are already some locks protecting most of the involved ac-
cesses, the locks could be slightly adjusted to fix these atomicity
violations. For example, in Figure 3, AV2 could be fixed by com-
bining the two separated locking regions (i.e., removing "rel(l);" at
line 6 and "acq(l);" at line 8). By doing so, the two accesses to
gCurrScript from thread t1 are fully protected by lock l; hence, the
access at line 17 by thread t2 cannot be interleaved in between the
two accesses. And AV2 is fixed.

On the other hand, no lock may protect any access from an
atomicity violation. In this case, a new lock is necessary. Howev-
er, when introducing a new lock, the introduced lock orders (if
any) must be carefully handled to avoid introducing deadlocks.

Besides, if a new lock is required, the visibility of the lock
should also be carefully determined. Unlike Grail that synthesizes
a gate lock, it would be better if we could insert a lock with the
same visibility as that of the involved variables.

Although the first step is to adjust any existing lock protec-
tion, a gate lock can also be inserted to fix an atomicity violation.
It is difficult to say which fix is better. For example, if the two
accesses of an atomicity violation are far away to each other and
if the same lock protects the two accesses separately, then adjust-
ing the two lock scopes may incur high runtime overhead. There-

fore, if an atomicity violation can be fixed by adjusting its lock
scopes, Fixer further produces a second fix by inserting a gate
lock. The second fix can also be an option to developers.

Overall, as shown in Figure 5, Fixer firstly analyses the given
atomicity violation to identify all involved lock acquisitions and
then determines whether to adjust the lock scope or to insert a
gate lock. For the latter, as a new lock is required, Fixer infers
the visibility of the involved variables to determine whether the
new lock should be a global one or a class field one. Next, Fixer
analyses the involved locks to avoid introducing deadlocks.

3.2 Adjust Lock Scopes to Fix Atomicity Viola-
tions
For atomicity violations that already involve some locks protect-
ing the accesses, they might be fixed by slightly adjusting the lock
scopes. In this paper, we only focus on three scenarios as shown
in Figure 6 (where a box with a lock indicates a pair of lock acqui-
sition and release):

 Case A: all accesses (e.g., a1, a2, and a3) are separately pro-
tected by the same lock. In this case, the atomicity violation
could be fixed via Combination: Combine two separated lock
scopes of the same lock of the corresponding thread (i.e.,
thread t1 in Case A).

 Case B and Case C: only part of accesses from a thread is
protected by a lock and other accesses from the second
thread are all protected by the same lock. Then, the atomici-
ty violation could be fixed via Extension: Extend the lock
scope of the first thread to also protect the remaining access-
es from this thread (i.e., thread t1 in Cases B and C).

There might be other cases where the lock scopes can be
changed to fix atomicity violations. Our criterion is that there
must be the same lock protecting at least one access of each
thread. Hence, for other cases, we fix them by inserting gate locks
(see the next subsection). Note that, HFix [35] has a similar sug-
gestion as Case B and Case C. However, HFix does not distinguish
Case A from Cases B and C. Hence, on Case A, HFix can introduce
self-deadlocks as discussed in Section 0 (also see our experiment
in Section 5.3).

Adjust lock

scope

Generate a patch

Insert a new

lock G

Infer lock visibility:

Avoid introducing

deadlock

Yes

Yes
No

No

Global, or

Class field

Any lock
already?

Any other
acquisition?

An atomicity
violation

Figure 5. An overview of our Fixer.

Case A

Case B

Case C

a3

a1

a2

a3

a1

a2

a3

a1

a2

Thread t1 Thread t2

a3

a1

a2

a3

a1

a2

a3

a1

a2

Thread t1 Thread t2

Legend a : original lock scope

Combination

Extension

Extension

a : changed lock scope

Figure 6. The three cases to fix certain atomicity violations

(where the arrows also indicate the error interleaving).

306

Adaptively Generating High Quality Fixes for Atomicity Violations ESEC/FSE'17, September 4-8 2017, Paderborn, Germany

3.3 Introduce New Locks to Fix Atomicity Vio-
lations
A new lock is necessary to fix an atomicity violation via gate lock
strategy. Unlike GLA that introduces a global gate lock, Fixer
tries to introduce a context-aware gate lock. Unlike Grail that
introduces a synthesized lock, Fixer automatically infers the lock
visibility of the new locks to avoid synthesizing gate locks. As a
result, Fixer provides an alternative way to insert gate locks.

3.3.1 Infer Visibility of Gate Locks. We found that, for an ato-
micity violation, the visibility of the involved variables is usually
determined: either global variables or class field variables. Here,
the fields refer to the variable member of class in object-oriented
languages (e.g., C++) or struct (e.g., C). For example, the variables
outcnt and output in Figure 2 are two fields of the struct buff-
ered_log; and the variable gCurScript in Figure 3 is a global varia-
ble.

Hence, given an atomicity violation, if all its variables are
global, an explicit global lock is enough; otherwise, if all involved
variables are fields of the same class instance, a field lock within
the same class is also enough. In these two cases, even if we fol-
low Grail to synthesize gate locks, the synthesized gate locks are
always the same global lock (for the former case) or are always
the same lock of the same class instance. Hence, there is no need
to additionally synthesize gate locks dynamically; a unique global
gate lock or a class level gate lock is enough.

For single-variable atomicity violation [38], the involved vari-
able is deterministically a global one or a class field. However, for
multi-variable atomicity violations [38], the involved variables
may contain:

(1) Global variables only, or
(2) Field variables of the same class instances, or
(3) Both global ones and class fields, or
(4) Multiple fields of different class, or
(5) Fields of the same class but different class instances.

The first two cases can be handled in the same way as han-
dling single-variable atomicity violations because all involved
variables are either global ones or fields of the same class in-
stance. However, the last three cases are more complex. To fix
them, Fixer simply inserts a global lock to serialize two threads.
Admittedly, the synthesized gate locks by Grail may perform
better than the global locks theoretically. Note that, the fields of a
class/struct may also be global (e.g., declared to be static). Such
cases can be easily handled and hence are not discussed in this
paper.

3.3. 2 Insert Gate Locks. Once the visibility of a gate lock is de-
termined, it is straightforward to insert the gate lock to serialize
the two threads of the given atomicity violation. This step is the
same as what GLA performs (see Figure 1(b) where the gate lock
is the lock G).

3.4 Avoid Introducing Deadlocks

3.4.1 Why can deadlocks be introduced? Fixer fixes an atomicity
violation by either adjusting lock scope of an existing lock or
inserting a gate lock. In both cases, deadlocks may be introduced.
We discuss the two cases below.

Deadlocks may be introduced by adjusting lock scopes. Recall
that adjusting lock scopes consists of either combination or ex-
tension. The combination of two separated lock scopes may in-
troduce new lock orders if, in between the two separated scopes,
there are other lock acquisitions. Consider the example in Figure
7(a) where a pair of acquisition and release on lock m exists in
between two lock scopes on lock l. After combining the two lock
scopes on lock l into one, a new lock order l ↝ m is introduced.
Similarly, the extension of a lock scope to protect more accesses
may also introduce new lock orders, as shown in Figure 7(b).
Then, for above two scenarios, deadlocks are introduced if a dif-
ferent thread has the lock order m ↝ l, as shown in Figure 7(c).

If a gate lock is introduced, deadlocks may also be introduced.
We have demonstrated this in Figure 3(b).

To ease the presentation, we refer to locks that are nested in
combined or extended lock scopes or inserted gate lock scopes as
inner locks (i.e., lock m in Figure 7 and lock l at line 8 in Figure
3); and we refer to the corresponding new lock orders as inner
lock orders (i.e., l ↝ m in Figure 7 and G ↝ l in Figure 3). Similar-
ly, we refer to new lock orders from other existing locks to ad-
justed locks or to inserted gate locks as outer lock orders (l ↝ G
in Figure 3); and we refer to the former existing locks as outer
locks (lock l at line 1 in Figure 3).

3.4.2 How to Avoid Introducing Deadlocks. For the inner lock
orders (e.g., l ↝ m or G ↝ m), if the inner locks (i.e., lock m) can
be identified, then these lock orders can be eliminated by acquir-
ing two locks together (i.e., acq(l, m) or acq(G, m)). This is because
the inner locks, if any, exist in between the two accesses of one
thread; and the two accesses usually have a short distance in term
of source code lines. Otherwise, if the inner locks cannot be ac-
quired together with the adjusted locks or the inserted gate locks,
Fixer gives up fixing the atomicity violation.

When an inner lock m is acquired together with the adjusted
lock l, it is possible that this lock m is actually the lock l. In this
case, a self-deadlock is introduced as the lock will be acquired
twice. However, it is difficult to statically know whether the two
locks l and m are the same one, especially when the class/struct
instances are involved. To solve this challenge, we change the
property of lock m to be reentrant (i.e., recursive lock) because a
reentrant lock can be acquired and released multiple times in a
nested manner by the same thread. For the inserted gate lock G,
we also set both lock G and any inner lock m to be a reentrant
lock considering recursive function calls.

If an inner lock (e.g., lock m in Figure 7) is acquired together
with adjusted locks or inserted gate locks (e.g., acq(l, m) or acq(G,
m)), to avoid introducing new lock orders, we do not remove the
original lock acquisition (e.g., acq(m)) on inner locks. Because the

(a)

Thread t2

acq(l);

a1

acq(m);

rel(m);

a2

rel(l);

Thread t1

acq(l);

a1

rel(l);

acq(m)

rel(m);

acq(l);

a2

rel(l);

Thread t2

acq(l);

a1

acq(m);

rel(m);

a2

rel(l);

Thread t1

acq(l);

a1

rel(l);

acq(m)

rel(m);

a2

(b)

Thread t3

acq(m);

acq(l);

⋮

(c)
Figure 7. New lock orders are introduced if lock scopes are

adjusted.

307

ESEC/FSE'17, September 4-8 2017, Paderborn, Germany Y. Cai, L. Cao, and J. Zhao

original lock acquisition may exist in a different function which
can be called from a different control branch. (Otherwise, we
have to adopt ad-hoc synchronization to fix program control as
adopted in DFixer to fix deadlocks, which is usually harmful [56].)

For the second type of outer lock orders introduced due to in-
serted gate locks (i.e., k ↝ G where lock k is acquired before the
acquisition on lock G), if all inner lock orders are eliminated (i.e.,
G ↝ m), no deadlock will be introduced. This is because outer
lock orders alone without their reversed lock orders cannot form
any deadlocks.

However, for the second type of outer lock orders introduced
by lock adjusting (i.e., k ↝ l where lock k is acquired before the
acquisition on lock l), even if we eliminate their reversed lock
order l ↝ k, a third thread may still form their reversed lock or-
ders l ↝ k. This is because, unlike inserted gate locks, these locks
already exist before fixing. In this case, we give up fixing such
atomicity violations by adjusting locks; instead, we try to fix it by
introducing a gate lock, as shown in Figure 5. Of course, in this
case, the fixing approach via adjusting locks can be a suggestion.

Besides lock acquisitions and releases, other additional lock
synchronizations (e.g., wait(l) and notify(l)) may be involved in
one or more threads of atomicity violations. Such cases are com-
plicated. Therefore, we only consider one case where a lock is
adjusted to fix an atomicity violation, and the additional synchro-
nization(s) is within the lock scope (protected region) of the ad-
justed lock before and after adjusting. In this case, no new lock
order is introduced. For other cases, Fixer gives up its fixing.

Limitations. Fixer may fail to fix an atomicity violation in
two cases: (1) there is other inner lock in between the two access-
es of a thread and such lock(s) cannot be acquired together with
the inserted gate lock or the adjusted lock; and (2) synchroniza-
tions except lock acquisitions and releases will be contained with-
in the adjusted lock scope or the scope of the inserted gate locks
except the case discussed in the last paragraph. To guarantee a
theoretical correctness, Fixer gives up fixing such atomicity
violations.

3.4.3 Guarantee of Fixer. Fixer does not guarantee to fix all
atomicity violations as discussed in the last subsection. However,
if it generates a fix, it guarantees to fix the atomicity violation
without introducing deadlocks as Theorem 1.

Theorem 1. Given an atomicity violation AV, if Fixer generates a
fix, it does not introduce any deadlock.

Proof Sketch. We prove the theorem via three cases showing
that the fix does not introduce resource deadlocks, communica-
tion deadlocks, and self-deadlocks, respectively. And we mainly
prove the scenarios where a gate lock is inserted. The scenarios
where a lock is adjusted can be proved similarly.

A) Suppose that Fixer introduced a gate lock G to fix AV. If
no new lock order is introduced, there is no way for Fixer to
introduce a resource deadlock. Now, suppose that there are other
locks within the scope of gate lock acquisitions, these locks are
acquired together with the gate lock G by following Fixer ap-
proach (see the first paragraph of Section 0). (Note, if any inner
lock cannot be acquired together with gate lock, Fixer does not
produce any fix, see the last paragraph of Section 0.) Hence, any
potential inner lock orders are eliminated. Next, suppose that
some outer lock orders from an outer lock is introduced, say k ↝

G where k is an outer lock. However, as no any inner lock order
(e.g., G ↝l where the lock l may be the lock k) is introduced.
Hence, no reversed lock order of the introduced outer lock order
k ↝G is introduced. Therefore, no resource deadlock is intro-
duced by Fixer.

B) If there are other synchronizations (e.g., wait() and notify)),
by following Fixer approach (see the 6th paragraph of Section 0),
Fixer only adjusts lock scope if: before and after adjusting, the
synchronizations are always within the original scope. That is,
after adjusting, the lock orders remain the same as that before
adjusting the lock scope. Hence, Fixer does not block any com-
munication (i.e., not introduce communication deadlocks).

C) If any lock is inserted or adjusted, Fixer changes it to be
re-entrant lock (see the 1st paragraph of Section 0). This enables a
thread to acquire the same lock multiple times without blocking
itself. Hence, Fixer does not introduce self-deadlocks.

Based on the above analysis, Theorem 1 is proved. □

3.5 Our Approach on Examples

The fix to AV1 by Fixer is shown in Figure 8(a) (where we only
show one thread as two threads share the same code lines). On
AV1, no lock is found. Then, Fixer introduces a gate lock G to fix
it. This fix is the same as GLA. However, Fixer firstly inserts a
lock G to the struct buffered_log before inserting lock acquisition
and release acq(buf->G) and rel(buf->G). This brings an alterna-
tive fix code lines besides that by Grail (see Figure 4).

To fix AV2, Fixer combines the two lock scopes of lock l for
thread t1 as shown in Figure 8(b). This fix is obviously simple and
different from that by GLA and Grail. Besides, on AV2, no dead-
lock is introduced by Fixer; whereas, HFix introduces a self-
deadlock (see the last paragraph of Section 0).

3.6 Fix Program Control Flow

Like other approaches, Fixer also needs to fix program control
flows, which is similar to existing works [6][22][23]. For example,
when an acquisition acq(G) is inserted, its corresponding release
rel(G) should be inserted at each exit branch containing the in-
serted acq(G).

ap_buffered_log_writer(...){

+ acq(buf->G);

idx = buf->outcnt;

s = &buf->output[idx];

buf->outcnt += len;

+ rel(buf->G);

}

struct buffered_log{

apr_size_t outcnt;

char outbuf[…];

+ Lock G;

}

(b) How Fixer fixes AV2.(a) How Fixer fixes AV1.

Thread t1

acq(l);
…
gCurrScript = aspt;
…

- rel(l);
…

- acq(l);
…
gCurrScript

->compile();
…
rel(l);

Thread t2

acq(l);
…
gCurrScript

= NULL;
…
rel(l);

Figure 8. One way to fix AV1 and AV2 by Fixer. (On AV1, we

only show one thread as two threads share the same code lines.

On AV2, the fix is to combine two separated lock scope,

corresponding to Case A in Figure 6. The second fix to AV2 by

Fixer (i.e., inserting a gate lock) is omitted.)

308

Adaptively Generating High Quality Fixes for Atomicity Violations ESEC/FSE'17, September 4-8 2017, Paderborn, Germany

4. USER STUDY OF GRAIL AND FIXER
This section presents our user study on the fixes to the atomicity
violations AV1 and AV2. We decided to conduct the user studies
on these two atomicity violations as they are representatives
among all benchmarks in our experiment (see Section 5). The
questionnaire firstly offered a brief introduction to atomicity
violations. The second parts were the two original pieces of code
with two atomicity violations and two short descriptions on how
they could occur, as well as the two fixes of Grail and Fixer
(which were referred to as Tool1 and Tool2, respectively). We
designed four selection-questions: between Tool1 and Tool2, (1)
which fix is more understandable (Understandability), (2) which
fix is more readable (Readability), (3) which fix may incur larger
overhead; and (4) which fix do you prefer? For each question, we
offered an "Any" option to indicate an equal or an unclear prefer-
ence. We also requested participants to fill their occupations and
any additional comments. Our questionnaire was distributed via
the social network community WeChat (see our tool website).
There was no time limit for participants to answer the questions
before we collected the results at the paper submitting time.

Totally, there were 40 participants: 3 from Mathematics, 4
from Finance, 33 from IT companies. Table 1 presents the results.
From the table, it shows that, more than 85% participants held a
preference on Fixer other than on Grail in terms of under-
standability and readability. On overhead, more than 67% partici-
pants regarded that Grail incurs larger overhead. Finally, Fixer
was well accepted (preferred) by more than 80% participants.

Among the 40 participants, only 8 of them filled their com-
ments; and 7 comments obviously pointed out that Tool2 (i.e.,
Fixer) should be more readable, straightforward, adaptive and
simpler, (e.g., different fix for different variable visibility). The
remaining one did not point out which one is better.

5. EXPERIMENT

5.1 Benchmarks
We selected a set of real-world benchmarks [2][59] including 20
benchmarks. we excluded 6 of them: 1 deadlock, 1 duplicated bug
(i.e., cherokee), 3 order violations, and 1 atomicity violation in-
volving Java code. Including our two motivating examples (where
AV1 is from apache25520), there are 15 benchmarks. Some bench-
marks cannot be correctly compiled in our experiment environ-
ment. We followed an existing work [28] to extract the source
code containing atomicity violations. All these atomicity viola-
tions are listed in Table 3 including whether we used the original
benchmarks or the extracted ones (under the column "Original").

5.2 Implementation and Experimental Setup

We have implemented Fixer, GLA (i.e., the AFix [22] algorithm)
Grail, and HFix within LLVM 3.6 framework [1][31]. LLVM IR
does not support class/struct information. We modified Clang
frontend to generate the information for Fixer to infer lock visi-
bility. Grail synthesizes context-aware gate locks which is based
on String.intern() from Java library [37]. We extracted the
OpenJDK implementation of String.intern().

After applying the four techniques to all benchmarks, we ran
each fixed program by each technique for 1,000 times and collect-
ed the results. During this 1,000 runs, we inserted a set of random
sleep before and after each lock acquisition of the fixed programs
to amplify the probabilities for any introduced deadlock to occur.
We also ran them for 1,000 additional times without sleep to col-
lect their execution time except on those where deadlocks fre-
quently occurred after fixing.

To evaluate the performance scalability of the fixed programs,
we followed [37] to amplify the overhead introduced by each
technique for comparison purpose. We configured the number of
threads to be 2, 4, 8, 16, 32, 64, and 128. Note that, this amplifica-
tion only applies to execution of the code lines involved in ato-
micity violations. This is the same as the previous work [37].

Our experiments were conducted on a ThinkPad workstation
with a processor i7-4710MQ, installed with Ubuntu 14.04.

5.3 Result Analyses
In this section, we firstly present the summary of fixing results.
Next, we separately compare Fixer with HFix first, and then
compare Fixer with GLA and Grail. This is because HFix is only
applicable to atomicity violations with some locks by merging
two lock scopes. Among our benchmarks, only 6 out of 15
benchmarks can be handled by HFix.

5.3.1 Fixing Summary. Table 2 summarizes the fixing results

by all four techniques on all 15 atomicity violations. Overall, both
GLA and Grail correctly fixed 10 (i.e., 67%) atomicity violations.
HFix only correctly fixed 2 (i.e., 13%) atomicity violations. Our
Fixer correctly fixed all 15 (i.e., 100%) atomicity violations.

Besides, on performance scalability testing with 128 threads,
GLA incurred the largest overhead: 120.2% on average, followed
by Grail incurring 82.9% average overhead. HFix incurred an
average overhead of 32.5%. Fixer only incurred an average over-
head of 21.1%. From the summary, Fixer outperforms all other
techniques considering both effectiveness and efficiency.

5.3.2 Comparisons on Effectiveness. Table 3 (A) and (B) show
the fixing results. The first three columns show the benchmark
information. The fourth major column shows the fixes by Fixer.
The table also shows the results of Fixer and HFix on the 6 ato-
micity violations involving locks. In the table, "AdjL-A" means
that Fixer fixed the benchmark by adjusting an existing lock

Table 2. Fixing summary of all techniques.

Total

#of fixed atom. violations Avg. overhead

GLA Grail HFix Fixer GLA Grail HFix Fixer

15 10 (67%) 10 (67%) 2 (13%) 15 (100%) 120.2% 82.9% 32.5% 21.1%

Table 1. Statistics on user studies.

Tool1 (Grail) Tool2 (Fixer) Any

AV1

Understandability 2.5% 87.5% 10.0%

Readability 0.0% 90.0% 10.0%

Larger Overhead 67.5% 12.5% 20.0%

Preferred Fix 5.0% 95.0% 0.0%

AV2

Understandability 7.5% 92.5% 0.0%

Readability 2.5% 85.0% 12.5%

Larger Overhead 75.0% 10.0% 15.0%

Preferred Fix 10.0% 82.5% 7.5%

309

ESEC/FSE'17, September 4-8 2017, Paderborn, Germany Y. Cai, L. Cao, and J. Zhao

(AdjL) according to Case A (as shown in Figure 6). The sub-
column "L-type" shows the lock visibility (Global or Field) that
Fixer adjusted or inserted. The remaining columns of Table 3 (A)
show (1) the number of new lock orders introduced by each tech-
nique (in form of "outer/inner"), (2) the number of deadlocks in-
troduced by each technique, (3) the average overhead of each
technique at the number of threads to be 128. In the last row, we
also show the summation values or the average values for the last
three major columns. Table 3 (B) shows the results of Fixer,
GLA, and Grail on fixing all atomicity violations. Table 3 (B) can
be read in the same way as Table 3 (A) except the fourth column
which shows whether Fixer inserts a Global or a Field gate lock.
In Table 3, the marks "-" under the last major column ("Average
overhead") indicate that no data was collected because, for GLA,
Grail, and HFix, after fixing, deadlocks frequently occurred (ex-
plained below). Note that, both kinds of fixes by Fixer were
listed in Table 3 for comparison purpose.

HFix was only applicable to 6 atomicity violations. Among
these 6 atomicity violations, three of them fall into Case A, one of
them falls into Case B, and the remaining two fall into Case C.
From Table 3 (A), it is observed that HFix introduced 4 inner lock
orders and they formed 4 self-deadlocks.

From Table 3 (B), we observed that both GLA and Grail intro-
duced 20 new lock orders on 11 benchmarks; Fixer introduced 7
new lock orders on 5 benchmarks. However, Fixer only intro-
duced outer lock orders but no inner lock orders; and it did not
introduce any deadlocks. This is consistent with its guarantee.
But both GLA and Grail introduced 5 deadlocks, respectively.

Subsection 5.3.4 will discuss why HFix, GLA, and Grail intro-
duced deadlocks.

5.3.3 Comparisons on Efficiency. From Table 3 (A), we ob-
served that, on the only two benchmarks that HFix was able to fix
correctly, both HFix and Fixer introduced almost the same over-
head (i.e., 26.80% vs 25.80% and 38.20% vs 37.80%). This is because
the two techniques produced the same fix except some fix code
by Fixer to avoid introduce deadlocks.

From Table 3 (B), it is observed that, Fixer incurred signifi-
cantly lower overhead than that by GLA and Grail, even on
benchmarks that all the three techniques handled correctly. Com-
pared with GLA, Grail incurred lower overhead. This is because
Fixer is able to infer the lock visibility and can insert a class field
gate lock; however, GLA always inserts global locks and Grail
always inserts synthesized locks which may take effect but may
introduce additional overhead on maintaining the map from a
hash value to a unique lock.

Figure 9 shows the performance scalability of all techniques
with increasing number of threads. The x-axis of each sub-figure
shows the number of threads from 2 to 128; and the y-axis shows
the time (in microsecond µs). Particularly, Figure 9(A) shows the
scalability comparison of HFix and Fixer; and Figure 9(B) shows
the scalability comparison of GLA, Grail, and Fixer. Note: if
HFix, GLA, or Grail failed to correctly fix an atomicity violation
(and no data was collected), the time of Fixer is still shown for
comparison with that from the original runs.

The advantage of Fixer on inferring lock visibility is clearly
reflected in Figure 9, where we highlight the sub-figures in gray
background if a Field lock was adjusted or inserted by Fixer.

Figure 9(A) shows that, on two benchmarks that HFix were
able to fix correctly, both HFix and Fixer introduced almost the

Table 3.

(A) Detailed comparisons of adjusting lock fixes by HFix and Fixer.

Benchmark Original? Loc
Fixer # of new (outer/inner) lock orders # of Deadlocks Average overhead

Case L-type HFix Fixer HFix Fixer HFix Fixer

mozilla 106 AdjL-A Global 0/1 0/0 1 0 - 12.80%

apache21285 45.34K AdjL-A Field 0/1 0/0 1 0 - 36.50%
apache45605 43.86K AdjL-B Field 0/0 0/0 0 0 26.80% 25.80%

mysql12228 122 AdjL-A Global 0/1 0/0 1 0 - 15.40%

mysql12848 181 AdjL-C Field 0/1 0/0 1 0 - 7.10%
mysql169 145 AdjL-C Field 0/0 0/0 0 0 38.20% 37.80%

 Sum: 0/4 0/0 4 0 Avg. 32.50% 22.57%

(B) Detailed comparisons of gate lock fixes by GLA, Grail, and Fixer.

Benchmark Original? Loc
Fixer # of new (outer/inner) lock orders # of Deadlocks Average overhead

L-type GLA Grail Fixer GLA Grail Fixer GLA Grail Fixer

mozilla 106 Global 1/1 1/1 0/0 1 1 0 - - 14.70%
aget0.4 0.32K Global 1/0 1/0 1/0 0 0 0 5.70% 16.00% 8.06%

apache21285 45.34K Field 1/1 1/1 0/0 1 1 0 - - 44.36%

apache21287 45.61K Field 0/1 0/1 0/0 0 0 0 133.20% 72.70% 3.35%
apache25520 45.61K Field 0/0 0/0 0/0 0 0 0 163.00% 50.80% 25.63%

apache45605 43.86K Field 0/0 0/0 0/0 1 1 0 - - 31.66%

cherokee0.9.2 12.76K Field 1/0 1/0 1/0 0 0 0 198.00% 108.60% 25.33%
memcached127 1.27K Global 0/2 0/2 0/0 0 0 0 100.70% 118.30% 100.89%

mysql12228 122 Global 1/1 1/1 0/0 1 1 0 - - 17.70%
mysql12848 181 Field 1/1 1/1 0/0 1 1 0 - - 7.21%

mysql169 145 Field 1/1 1/1 0/0 0 0 0 211.70% 288.10% 77.53%

mysql2011 126 Field 3/0 3/0 3/0 0 0 0 54.90% 22.90% 5.63%
mysql3596 122 Field 0/0 0/0 0/0 0 0 0 90.40% 31.60% 9.52%

mysql644 118 Field 0/0 0/0 0/0 0 0 0 124.40% 95.40% 1.00%

mysql791 125 Field 2/0 2/0 2/0 0 0 0 120.40% 24.50% 1.59%

 Sum: 12/8 12/8 7/0 5 5 0 Avg. 120.20% 82.90% 24.90%

310

Adaptively Generating High Quality Fixes for Atomicity Violations ESEC/FSE'17, September 4-8 2017, Paderborn, Germany

same overhead. Figure 9(B) shows that Fixer obviously incurred
the least overhead compared with that by GLA and Grail. On 2
sub-figures not highlighted (i.e., Figure 9 (B.b) and (B.h)), all tech-
niques incurred the similar overhead. On 2 remaining sub-figures
not highlighted (i.e., Figure 9 (B.a) and (B.i)), all techniques except
Fixer failed to fix the 2 atomicity violations, and no data was
collected for GLA and Grail.

On the other hand, from Figure 9 (B), among most of sub-
figures, GLA incurred the largest overhead; and Grail incurred
less overhead than that by GLA. This is consistent with the pre-
vious experimental result [37]. However, on three atomicity vio-
lations aget0.4, memcached127, and mysql169 (i.e., Figure 9 (B.b),
(B.h), and (B.k)), GLA incurred less overhead than that by Grail.
We have identified that, on the first two, the involved variables
are global ones. Hence, Grail always synthesized the same gate
locks. On the last one, although the variables are class fields,
there is a global lock (named LOCK_OPEN) that is firstly acquired
by both threads. Hence, Grail gained no advantage by synthesiz-
ing a gate lock. Instead, its synthesizing process increased its
overhead.

5.3.4 Case Studies and Discussions. One of the main contribu-
tions of Fixer is, if a gate lock is inserted, the ability to infer lock
visibility to reduce potential fixing overhead. We have presented
how our Fixer inserted a class/struct field gate lock to fix AV1
from apache25520. The case on mysql791 is almost the same as AV1,
where an atomicity violation occurs between two writes to
log_type from a thread and a read to it from a different thread.
And this variable log_type is from a class MYSQL_LOG.

To fix this atomicity violation, Grail also inserted a synthe-
sized hash lock: "G = contextL(hash(&(this->log_type))); acq(G);",
which unintentionally indicates that the lock G has nothing to do
with the class MYSQL_LOG. However, Fixer identified that
log_type is a member of class MYSQL_LOG and then inserted a
lock G as a member of this class. Finally, it only inserted an acqui-
sition "acq(this->G);" (and "acq(mysql_log->G);" in another
thread). This fix might be more understandable as it is clearly
reflected that the lock G is used to protect its neighbor member
lock_type of the same class MYSQL_LOG. Hence, such kind of
fixes provides an alternative way to improve fix acceptance to
developers.

(A) Performance scalability of HFix and Fixer.

(B) Performance scalability of GLA, Grail, and Fixer.

Figure 9. Performance scalability where the x-axis shows the increasing number of threads from 2 to 128 and y-axis shows the

execution time (µs).

0

500

1000

1500

2000

2500

3000

3500

2 4 8 16 32 64 128

(f) mysql169

aFixer

Orig

HFix

0

200

400

600

800

1000

2 4 8 16 32 64 128

(a) mozilla

aFixer

Orig

0

200

400

600

800

1000

2 4 8 16 32 64 128

(b) apache21285

aFixer

Orig

0

200

400

600

800

1000

1200

1400

2 4 8 16 32 64 128

(c) apache45605

aFixer

Orig

HFix

0

200

400

600

800

1000

1200

2 4 8 16 32 64 128

(d) mysql12228

aFixer

Orig

0

200

400

600

800

1000

1200

2 4 8 16 32 64 128

(e) mysql12848

aFixer

Orig

0

500

1000

1500

2000

2500

3000

3500

2 4 8 16 32 64 128

(k) mysql169

aFixer

GLA

Grail

Orig

0

300

600

900

1200

1500

2 4 8 16 32 64 128

(l) mysql2011

aFixer

GLA

Grail

Orig

0

500

1000

1500

2000

2 4 8 16 32 64 128

(m) mysql3596

aFixer

GLA

Grail

Orig

0

500

1000

1500

2000

2 4 8 16 32 64 128

(n) mysql644

aFixer

GLA

Grail

Orig

0

500

1000

1500

2000

2 4 8 16 32 64 128

(o) mysql791

aFixer

GLA

Grail

Orig

0

600

1200

1800

2400

2 4 8 16 32 64 128

(g) cherokee0.9.2

aFixer

GLA

Grail

Orig

0

600

1200

1800

2400

2 4 8 16 32 64 128

(h) memcached127

aFixer

GLA

Grail

Orig

0

200

400

600

800

1000

1200

1400

2 4 8 16 32 64 128

(f) apache45605

aFixer

Orig

0

200

400

600

800

1000

1200

2 4 8 16 32 64 128

(i) mysql12228

aFixer

Orig

0

200

400

600

800

1000

1200

2 4 8 16 32 64 128

(j) mysql12848

aFixer

Orig

0

200

400

600

800

1000

2 4 8 16 32 64 128

(b) aget0.4

aFixer

GLA

Grail

Orig

0

500

1000

1500

2000

2500

2 4 8 16 32 64 128

(d) apache21287

aFixer

GLA

Grail

Orig

0

500

1000

1500

2000

2500

2 4 8 16 32 64 128

(e) apache25520

aFixer

GLA

Grail

Orig

0

200

400

600

800

1000

2 4 8 16 32 64 128

(a) mozilla

aFixer

Orig

0

200

400

600

800

1000

2 4 8 16 32 64 128

(c) apache21285

aFixer

Orig

311

ESEC/FSE'17, September 4-8 2017, Paderborn, Germany Y. Cai, L. Cao, and J. Zhao

Study on Deadlock Introduction. From Table 3, GLA and
Grail both introduced 5 deadlocks. On mozilla, the introduced
deadlock is shown in Figure 3 and we have analysed the reason.
The other 4 deadlocks (on apache21285, apache45605, mysql12228, and
mysql12848) are similar to that on mozilla.

Among our benchmarks, HFix is only applicable to fix 6 ato-
micity violations but introduced 4 deadlocks (see Table 3 (A)).
These deadlocks are self-deadlocks. We have analysed the intro-
duced deadlock on mozilla.

Figure 10 shows another case from mysql12848. In Figure 10, the
atomicity violation occurs if, in between line 4 and line 8 (two
writes to qSize), a second thread reads the value of qSize. This
program contains a lock gMutex protecting the two accesses (at
lines 4 and 14); hence, HFix is applicable to fix it by enlarging the
lock scope of gMutex (between lines 2 and 6) to protect the write
to qSize at line 8. That is, HFix moves the lock release rel(gMutex)
to line 9 (i.e., "+ rel(gMutex)"). Then, all three accesses to qSize are
protected by lock gMutex. However, at line 8, there is a call to
function init_cache() which also contains a pair of lock acquisition
and release on lock gMutex. Hence, thread t1 is blocked when it
enters function init_cache() to acquire lock gMutex as which has
been acquired by itself at line 2. Thus, a self-deadlock occurs.

Fixer is able to correctly fix this atomicity violation. Accord-
ing to Figure 6, this atomicity violation falls into Case C. Hence,
Fixer also tries to fix it by extending the lock scope of gMutex,
which is the same as HFix. Next, Fixer has to ensure that no
new (inner) lock order is introduced from lock gMutex to other
locks in between line 6 and line 9. Then, Fixer found a pair of
lock acquisition and release on the same lock gMutex after lock
scope extension. Finally, Fixer put this lock acquisition together
with lock acquisition at line 2 (i.e., in form of acq(gMutex, gMutex)
and modified the property of this lock to be reentrant. In this
way, this potential self-deadlock is avoided.

Discussion on HFix. HFix can also be adapted to change the
locks to be re-entrant locks to avoid introducing self-deadlock.
However, it still cannot avoid introducing other deadlocks as it
may introduce new lock orders (see Section 0). Besides, HFix only
targets on fixing atomicity violations involving locks. From our
benchmarks, we see that there are still many atomicity violations
(e.g., 9 out of 15) not involving locks; HFix fails to fix these ato-
micity violations. What's more, in some cases, even if an atomici-
ty violation can be fixed by adjusting a lock, gate lock strategy
might be better. For example, on mysql169, a global lock
LOCK_open is used to protect a class field variable. In such cases,
a field lock under the same class might be better. It is difficult to
say which fix is better without deeply understanding the source
code. However, Fixer can produce both kinds of fixes.

6. RELATED WORK
Concurrency bugs widely exist in multithreaded programs [4][5]
[44]. Many techniques [11][39][18][22][23][34][37][50][52][54]
[62] have been proposed to fix them automatically. Many of these
techniques insert gate locks to serialize executions of threads
involved in the bug. The inserted gate lock may introduce
performance bugs and deadlocks, as already noticed [22][23][41].
Although deadlocks could be theoretically detected via
reachability analysis [27] or model checking [20], they cannot
scale up to large-scale programs.

We have extensively discussed GLA, Grail, and HFix. DFixer
[6] adopts lock pre-acquisiton to fix deadlocks by eliminating the
hold-and-wait condition that is a necessary condition for a
deadlock to occur. However, DFixer is not applicable to fix
concurrency bugs involving memory accesses. Fixer is specially
designed to fix atomicity violations.

Flint [36] tries to fix linearizability violation in concurrent
compositions (i.e., Map data structure). ConcBugAssist [28] au-
tomatically infers wrong interleaving and then applies constraints
(i.e., gate locks, wait and notify operations) to fix concurrency
bugs. Unlike Fixer, ConcBugAssist may introduce deadlocks.

Concurrency bugs can also be prevented or avoided [12][13]
[17][26][51]. Gadara [51] and Dimmunity [26] prevent previously
occurred deadlocks by invoking gate locks depending on whether
a deadlock may occur based on execution context matching. Fix-

er could be adopted into these techniques to infer the visibility of
gate locks to be inserted to improve runtime overhead.

Recovery techniques could be considered once a concurrency
bug occurs. ConAir [61] tries to recover most concurrency bugs
with low overhead. Sammati [45] and [46] aim to provide dead-
lock recovery by rolling back executions. Lin et al. [33] propose to
change lock acquisition primitives (i.e., from acq() to tryAcq()).
However, recovery might be infeasible as discussed in [33] con-
sidering unrecoverable operations (e.g., file IO operations).

7. CONCLUSION
Concurrency bugs are difficult to be fixed correctly. We presented
Fixer to fix atomicity violations adaptively. It analyses the lock
acquisitions involved in a given atomicity violation to determine
whether to adjust existing lock acquisitions or to insert gate locks
to fix atomicity violations. For the latter case, unlike existing
approaches that insert global or synthesized gate locks, Fixer
tries to insert either global locks or class/struct field locks to gen-
erate fixes that are more efficient. Besides, Fixer guarantees
deadlocks-free fixes. We demonstrated the effectiveness and the
efficiency of Fixer over a set of 15 real-world benchmarks.

ACKNOWLEDGEMENT
We thank anonymous reviewers for their invaluable comments
and suggestions on improving this work. This work is supported
in part by National Natural Science Foundation of China (NSFC)
(grant No. 61502465 and 61572150), National 973 program of Chi-
na (2014CB340702), and the Youth Innovation Promotion Associa-
tion of the Chinese Academy of Sciences (YICAS) (2017151).

Thread t1

1. resize(…){
2. acq(gMutex);
3. …
4. qSize = 0;
5. …
6. - rel(gMutex);
7. …
8. qSize = init_cache();
9. + rel(gMutex);
10. }

Thread t2

11. …
12. acq(gMutex);
13. …
14. if(qSize == 0) …
15. …
16. rel(gMutex);

init_cache(){

acq(gMutex);
…

rel(gMutex); … }
Figure 10. The atomicity violation from mysql12848.

312

Adaptively Generating High Quality Fixes for Atomicity Violations ESEC/FSE'17, September 4-8 2017, Paderborn, Germany

REFERENCES
[1] LLVM Compiler Infrastructure, version 3.6, http://llvm.org.

[2] Concurrency Bugs, https://github.com/jieyu/concurrency-bugs.

[3] R. Agarwal, S. Bensalem, E. Farchi, K. Havelund, Y. Nir-
Buchbinder, S. D. Stoller, S. Ur, and L. Wang. Detection of deadlock
potentials in multithreaded programs. IBM Journal of Research and
Development, Vol. 54 (5), 520–534, 2010.

[4] E. Bodden and K. Havelund. Aspect-oriented race detection in Java.
IEEE Transactions on Software Engineering (TSE), 36(4), 509–527,
2010.

[5] E. Bodden and K. Havelund. Racer: effective race detection using
aspectj. In Proceedings of the 2008 International Symposium on
Software Testing and Analysis (ISSTA'08), 155–166, 2008.

[6] Y. Cai and L.W. Cao. Fixing deadlocks via lock pre-acquisitions. In
Proceedings of the 38th International Conference on Software
Engineering (ICSE'16), 1109–1120, 2016.

[7] Y. Cai and W.K. Chan. MagicFuzzer: scalable deadlock detection for
large-scale applications. In Proceedings of the 34th International
Conference on Software Engineering (ICSE'12), 606−616, 2012.

[8] Y. Cai, S. Wu, and W.K. Chan. ConLock: A constraint-based
approach to dynamic checking on deadlocks in multithreaded
programs. In Proceedings of the 36th International Conference on
Software Engineering (ICSE'14), 491–502, 2014.

[9] B. Cornu, T. Durieux, L. Seinturier, and M. Monperrus. NPEFix:
Automatic Runtime Repair of Null Pointer Exceptions in Java.
Technical Report 1512.07423, Arxiv, 2015.

[10] C. Flanagan and S. N. Freund. FastTrack: efficient and precise
dynamic race detection. In Proceedings of the 30th ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI'09), 121–133, 2009.

[11] Q. Gao, Y.F. Xiong, Y.Q. Mi, L. Zhang, W.K. Yang, Z.P. Zhou, B.
Xie, and H. Mei. Safe memory-leak fixing for C programs. In
Proceedings of the 37th International Conference on Software
Engineering (ICSE'15), 459–470, 2015.

[12] P. Gerakios, N. Papaspyrou, and K. Sagonas. A type and effect
system for deadlock avoidance in low-level languages. In Proceedings
of the 7th ACM SIGPLAN Workshop on Types in Language Design
and Implementation (TLDI'11), 15–28, 2011.

[13] P. Gerakios, N. Papaspyrou, K. Sagonas, and P. Vekris. Dynamic
deadlock avoidance in systems code using statically inferred effects.
In Proceedings of the 6th Workshop on Programming Languages and
Operating Systems (PLOS'11), Article No. 5, 2011.

[14] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer. A
systematic study of automated program repair: fixing 55 out of 105
bugs for $8 each. In Proceedings of the 34th International Conference
on Software Engineering (ICSE'12), 3–13, 2012.

[15] C. Le Goues, S. Forrest, and W. Weimer. Current challenges in
automatic software repair. Software Quality Journal, 21(3): 421–443,
2013.

[16] C. Le Goues, T. Nguyen, S. Forrest and W. Weimer. GenProg: A
generic method for automated software repair. IEEE Transactions on
Software Engineering (TSE), 38(1): 54-72, 2012.

[17] M. Grechanik, B.M. M. Hossain, U. Buy, and H. Wang. Preventing
database deadlocks in applications. In Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering
(ESEC/FSE'13), 356–366, 2013.

[18] M. Grechanik, B.M. M. Hossain, and U. Buy. Testing database-
centric applications for causes of database deadlocks. In Proceedings
of the 2013 IEEE 6th International Conference on Software Testing,
Verification and Validation (ICST'13), 174–183, 2013.

[19] C. Hammer, J. Dolby, M. Vaziri, and F. Tip. Dynamic detection of
atomic-set-serializability violations. In Proceedings of the 30th
International Conference on Software Engineering (ICSE'08), 231–
240, 2008.

[20] K. Havelund. Using runtime analysis to guide model checking of java
programs. In Proceedings of the 7th International SPIN Workshop on
SPIN Model Checking and Software Verification (SPIN'00), 245–
264, 2000.

[21] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu. Understanding and
detecting real-world performance bugs. In Proceedings of the 33rd
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI'12), 77–88, 2012.

[22] G. Jin, L.H, Song, W. Zhang, S. Lu, B. Liblit. Automated atomicity-
violation fixing. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI'11), 389–400, 2011.

[23] G. Jin, W. Zhang, D. Deng, B. Liblit, S. Lu. Automated concurrency-
bug fixing. In Proceedings of the 10th USENIX Conference on
Operating Systems Design and Implementation (OSDI'12), 221–236,
2012.

[24] P. Joshi, M. Naik, K, Sen, and D. Gay. An effective dynamic analysis
for detecting generalized deadlocks. In Proceedings of the 18th ACM
SIGSOFT International Symposium on Foundations of Software
Engineering (FSE'10), 327–336, 2010.

[25] P. Joshi, C.S. Park, K. Sen, amd M. Naik. A randomized dynamic
program analysis technique for detecting real deadlocks. In
Proceedings of the 30th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI'09), 110–
120, 2009.

[26] H. Jula, D. Tralamazza, C. Zamfir, and G.e Candea. Deadlock
immunity: enabling systems to defend against deadlocks. In
Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation (OSDI'08), 295–308, 2008.

[27] V. Kahlon, F. Ivančić, and A. Gupta. Reasoning about threads
communicating via locks. In Proceedings of the 17th International
Conference on Computer Aided Verification (CAV'05), 505–518,
2005.

[28] S. Khoshnood, M. Kusano, and C. Wang. ConcBugAssist: Constraint
solving for diagnosis and repair of concurrency bugs. In Proceedings
of the 2015 International Symposium on Software Testing and
Analysis (ISSTA'15), 165–176, 2015.

[29] M. Kim, S. Sinha, C. Görg, H. Shah, M. J. Harrold and M. G. Nanda.
Automated bug neighborhood analysis for identifying incomplete bug
fixes. In Proceedings of the 2010 Third International Conference on
Software Testing, Verification and Validation (ICST'10), 383–392,
2010.

[30] Z. Lai, S. C. Cheung and W. K. Chan. Detecting atomic-set
serializability violations in multithreaded programs through active
randomized testing. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering (ICSE'10), 235–
244, 2010.

[31] C. Lattner and B. Adve. LLVM: a compilation framework for lifelong
program analysis & transformation. In Proceedings of the
International Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization (CGO'04), 75–86,
2004.

[32] D. Li, W. Srisa-an, and M. B. Dwyer. SOS: saving time in dynamic
race detection with stationary analysis. In Proceedings of the 2011
ACM International Conference on Object Oriented Programming
Systems Languages and Applications (OOPSLA'11), 35–50, 2011.

[33] Y. Lin and S. S. Kulkarni. Automatic repair for multi-threaded
programs with Deadlock/Livelock using maximum satisfiability. In
Proceedings of the 2014 International Symposium on Software
Testing and Analysis (ISSTA'14), 237–247, 2014.

[34] P. Liu and C. Zhang. Axis: automatically fixing atomicity violations
through solving control constraints. In Proceedings of the 34th
International Conference on Software Engineering (ICSE'12), 299–
309, 2012.

[35] H.P. Liu, Y. Chen, and S. Lu. Understanding and generating high
quality patches for concurrency bugs. In Proceedings of the 2016 24th

313

ESEC/FSE'17, September 4-8 2017, Paderborn, Germany Y. Cai, L. Cao, and J. Zhao

ACM SIGSOFT International Symposium on Foundations of
Software Engineering (FSE'16), 715–726, 2016.

[36] P. Liu, O. Tripp, and X.Y. Zhang. Flint: fixing linearizability
violations. In Proceedings of the 2014 ACM International Conference
on Object Oriented Programming Systems Languages & Applications
(OOPSLA'14), 543–560, 2014.

[37] P. Liu, O. Tripp, and C. Zhang. Grail: context-aware fixing of
concurrency bugs. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering
(FSE'14), 318–329, 2014.

[38] S. Lu , S. Park , E. Seo , Y.Y. Zhou. Learning from mistakes: a
comprehensive study on real world concurrency bug characteristics.
In Proceedings of the 13th International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS'08), 329–339, 2008.

[39] D. Marino, C. Hammer, J. Dolby, M. Vaziri, F. Tip, and J. Vitek.
Detecting deadlock in programs with data-centric synchronization. In
Proceedings of the 2013 International Conference on Software
Engineering (ICSE'13), 322–331, 2013.

[40] M. Martinez and M. Monperrus. Mining repair actions for guiding
automated program fixing. Technical report 1311.3414, Arxiv, 2012.

[41] Y. Nir-Buchbinder, R. Tzoref, and S. Ur. Deadlocks: from exhibiting
to healing. In Proceedings of 8th Workshop on Runtime Verification
(RV'08), 104–118, 2008.

[42] S. Park. Debugging non-deadlock concurrency bugs. In Proceedings
of the 2013 International Symposium on Software Testing and
Analysis (ISSTA'13), 358–361, 2013.

[43] Y. Pei, C. A. Furia, M. Nordio, and B. Meyer. Automatic program
repair by fixing contracts. In Proceedings of the 17th International
Conference on Fundamental Approaches to Software Engineering
(FASE'14), 8411:246–260, 2014.

[44] M. Pradel and T. R. Gross. Fully automatic and precise detection of
thread safety violations. In Proceedings of the 33rd ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI'12), 521–530, 2012.

[45] H. K. Pyla and S. Varadarajan. Avoiding deadlock avoidance. In
Proceedings of the 19th International Conference on Parallel
Architectures and Compilation Techniques (PACT'10), 75–86, 2010.

[46] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: treating bugs as
allergies---a safe method to survive software failures. In Proceedings
of the 20th ACM Symposium on Operating Systems Principles
(SOSP'05), 235–248, 2005.

[47] F. Sorrentino, A. Farzan, and P. Madhusudan. PENELOPE: weaving
threads to expose atomicity violations. In Proceedings of the 18th
ACM SIGSOFT International Symposium on Foundations of
Software Engineering (FSE'10), 37–46, 2010.

[48] R.E.K. Stirewalt, R. Behrends, and L. K. Dillon. Safe and reliable use
of concurrency in multi-threaded shared-memory systems. In
Proceedings of the 29th Annual IEEE/NASA on Software
Engineering (SEW'05), 201–210, 2005.

[49] R. Surendran, R. Raman, S. Chaudhuri, J. Mellor-Crummey, and V.
Sarkar. Test-driven repair of data races in structured parallel
programs. In Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI'14), 15–
25, 2014.

[50] S.H. Tian and A. Roychoudhury. relifix: automated repair of software
regressions. In Proceedings of the 37th International Conference on
Software Engineering (ICSE'15), 417–482, 2015.

[51] Y. Wang, T. Kelly, M. Kudlur, S. Lafortune, and S. Mahlke. Gadara:
dynamic deadlock avoidance for multithreaded programs. In
Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation (OSDI'08), 281–294, 2008.

[52] D. Weeratunge, X.Y. Zhang, and S. Jaganathan. Accentuating the
positive: atomicity inference and enforcement using correct
executions. In Proceedings of the 2011 ACM International
Conference on Object Oriented Programming Systems Languages and
Applications (OOPSLA'11), 19–34, 2011.

[53] D. Weeratunge, X.Y. Zhang, and S. Jagannathan. Analyzing
multicore dumps to facilitate concurrency bug reproduction. In
Proceedings of the 15th edition of ASPLOS on Architectural Support
for Programming Languages and Operating Systems (ASPLOS'10),
155–166, 2010.

[54] W. Weimer, S. Forrest, C. L. Goues, and T. Nguyen. Automatic
program repair with evolutionary computation. Communications of
the ACM (CACM), 53(5): 109–116, 2010.

[55] A. Williams, W. Thies, and M.D. Ernst. Static deadlock detection for
java libraries. In Proceedings of the 19th European Conference on
Object-Oriented Programming (ECOOP'05), 602–629, 2005.

[56] W. Xiong, S. Park, J. Zhang, Y. Zhou, and Z. Ma. Ad hoc
synchronization considered harmful. In Proceedings of the 9th
USENIX Conference on Operating Systems Design and
Implementation (OSDI'10), 163–176, 2010.

[57] C.Y. Ye, S.C. Cheung, W.K. Chan, and C. Xu. Detection and
resolution of atomicity violation in service composition. In
Proceedings of the 6th joint meeting of the European Software
Engineering Conference and the ACM SIGSOFT symposium on The
Foundations of Software Engineering (ESEC/FSE'07), 235–244,
2007.

[58] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and L. Bairavasundaram.
How do fixes become bugs? In Proceedings of the 19th ACM
SIGSOFT Symposium and the 13th European Conference on
Foundations of Software Engineering (ESEC/FSE'11), 26–36, 2011.

[59] J. Yu and S. Narayanasamy. A case for an interleaving constrained
shared-memory multi-processor. In Proceedings of the 36th annual
International Symposium on Computer Architecture (ISCA'09), 325–
336, 2009.

[60] C. Zamfir and G. Candea. Execution synthesis: a technique for
automated software debugging. In Proceedings of the 5th European
Conference on Computer Systems (EuroSys'10), 321–334, 2010.

[61] W. Zhang, M. de Kruijf, A. Li, S. Lu, and K. Sankaralingam. ConAir:
featherweight concurrency bug recovery via single-threaded
idempotent execution. In Proceedings of the 18th International
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS'13), 113–126, 2013.

[62] J. Zhou, H. Zhang, and D. Lo. Where should the bugs be fixed? -
More accurate information-retrieval-based bug localization based on
bug reports. In Proceedings of the 34th International Conference on
Software Engineering (ICSE'12), 14–24, 2012.

314

