
International Journal of Network Security, Vol.24, No.3, PP.389-400, May 2022 (DOI: 10.6633/IJNS.202205 24(3).01) 389

Attack Chains Construction Method Based on
Vulnerabilities Combination

Jing Zhao1, Hao Sun1, and Yang Cheng2

(Corresponding author: Jing Zhao)

College of Software, Dalian University of Technology1

321 TuqiangStreet, Dalian 116620, China

Email: zhaoj9988@dlut.edu.cn

College of Computer Science and Technology, Harbin Engineering University2

145 NantongStreet, Harbin 150001, China

(Received May 23, 2021; Revised and Accepted Mar. 28, 2022; First Online Apr. 7, 2022)

Abstract

In computer networks, vulnerabilities exist in all aspects
of system design and operation management, and vulner-
abilities cannot be eliminated. Therefore, the attacker
will use a series of vulnerabilities in the target system
to achieve the purpose of the attack. Generally, a multi-
stage vulnerabilities combination attack form has a higher
success rate and destructiveness. To accurately reflect
the security risks brought by the multi-stage vulnerabili-
ties combination attack to the target system, this paper
proposes a method of constructing attack chains based
on the vulnerabilities combination. First, perform gener-
alized clustering of the vulnerabilities and then use the
idea of combined testing to combine the vulnerabilities
and build attack chains. At the same time, this paper
also proposes using answer set programming to remove
redundant and meaningless combinations of vulnerabil-
ities further. Finally, in the experimental environment
designed in this paper, the attack experiment is carried
out according to the attack chain. The experiment verifies
the effectiveness of the attack chain construction method
based on the vulnerabilities combination and improves the
efficiency of network security analysis.

Keywords: Answer Set Programming (ASP); Attack
Chain; Clustering; Vulnerability Combination

1 Introduction

With the continuous development of information technol-
ogy, the penetration rate of the Internet is getting higher
and higher, almost involving most countries and regions
in the world. But while enjoying the convenience of the
Internet, people often ignore the dangers behind it. With
the continuous expansion of the network scale and the in-
creasing complexity of the network structure, there are
more and more security issues in the network. Due to the

lack of security awareness and protection methods, cy-
ber espionage activities, privacy, and security issues are
becoming more frequent, complex, continuous, and dif-
ficult to intercept [23]. Among them, targeted network
intrusions are also called Advanced Persistent Threats
(APT). Attackers will comprehensively consider the vul-
nerabilities in the network system before APT attacks,
and then use a combination of multi-stage vulnerabili-
ties to slowly sneak into the network system to achieve
their goals, usually stealing network resources or even
network extortion [1, 12]. Attacks launched using com-
bined vulnerabilities are often more subtle and difficult
to detect, and are more likely to cause persistent and se-
rious threats to the network. For example, the Russian
threat organization APT28 used two 0day vulnerabilities
to invade a multinational government agency. The two
0day vulnerabilities are CVE-2015-3043 of Adobe Flash
and CVE-2015-1701 of Microsoft Windows. When a user
visits a malicious website, Flash triggers the CVE-2015-
3043 vulnerability, executes the shellcode to download the
payload, and finally triggers CVE-2015-1701 to steal the
system token. Egyptian security researcher Yasser discov-
ered three high-risk vulnerabilities on the PayPal website,
namely CSRF (cross-site request forgery) vulnerabilities,
authentication token bypass vulnerabilities, and security
authentication reset vulnerabilities. Yasser used the com-
bination of these three vulnerabilities to reset the answers
to the PayPal user’s security verification questions, and
finally took control of the victim’s PayPal account.

Multi-stage vulnerabilities combined attacks can at-
tack targets with high efficiency and high concealment
while being strategic and intelligent to avoid detection.
Even with the most advanced protection strategies, it is
still difficult to avoid this new type of attack [2,20]. There-
fore, the vulnerability must be analyzed from the overall
network system. Proposing an effective security analysis
strategy for the target network system is particularly crit-
ical to realize the predictability and visualization of net-



International Journal of Network Security, Vol.24, No.3, PP.389-400, May 2022 (DOI: 10.6633/IJNS.202205 24(3).01) 390

work attacks. At present, many scholars have proposed
different analysis methods. For example, [16, 17, 21] pro-
posed a method that can analyze the attack path of the
attacker from the perspective of the bottom layer of the
operating system. This method believes that the attacker
will use some commands to achieve the goal when en-
tering the network system, and the invocation process of
these commands will be recorded in the log by the sys-
tem’s monitoring tool or command audit tool, to analyze
the causality of the attack. However, this method needs to
collect a large number of log records for a specific network,
and it is not an easy task to extract effective attack infor-
mation from a large amount of data. And because of the
diversity of logs, it is difficult to analyze the dependency
of attacks [14]. As early as 1998, Phillips et al. proposed
the concept of constructing an attack graph to analyze the
vulnerability of the overall network system [22]. Analyze
the possible attack path from the attack graph. However,
because the attack graph enumerates all possible attack
paths in the network system, the complexity and compu-
tational cost of constructing the attack graph will increase
as the system scales up.

To solve the difficulty of analyzing attack information
from log records, we hope to analyze the attack path from
the vulnerabilities in the system. In this way, it is possi-
ble to analyze the correlation in the attack process more
intuitively. Given the high complexity and high cost of
the attack graph, we found that during the construction of
the attack graph, the exploitation of vulnerabilities in cer-
tain attack stages is similar. The similarities mentioned
here will be explained in detail later. To reduce the risk
of being discovered, the attacker usually chooses a sim-
ple and efficient attack path to achieve the goal. Similar
vulnerabilities bring similar results to attackers, so attack-
ers usually do not reuse similar vulnerabilities. The at-
tack chain construction technology based on vulnerability
clustering-combination can effectively solve the problem
of attack graphs. It is worth mentioning that vulnerabil-
ities are widespread in network systems and will always
exist [24, 25]. Even if the maintenance personnel make
timely patches and updates when they detect vulnerabili-
ties in the system, they cannot guarantee that the vulner-
abilities no longer exist and whether new vulnerabilities
are introduced. Moreover, in some cases, it is very ex-
pensive to repair vulnerabilities, especially in the field of
industrial control. It is difficult to repair vulnerabilities.
Therefore, it is necessary to combine the vulnerabilities
in the known network system, construct the attack chain,
and analyze the security of the network system.

The main contributions of this paper are as follows:

1) According to the characteristics of vulnerabilities,
this paper designs a formal description method.

2) According to the similarity of vulnerabilities, this pa-
per designs a method of vulnerabilities clustering,
which divides vulnerabilities into limited categories.

3) This paper designs two methods to combine vulner-

abilities. First, based on the idea of t-way combina-
tion, we use the IPOG algorithm to perform a 2-way
combination of vulnerabilities. Second, we consider
using an answer set programming program to com-
bine vulnerabilities to remove redundant and mean-
ingless combinations of vulnerabilities.

4) Finally, we designed an experimental environment.
Then use the attack chain to attack the target sys-
tem. The experiment proves the effectiveness of our
method.

The rest of this paper is organized as follows. In the
second section, we reviewed more related work. In the
third section, the description method of the vulnerability
and the architecture of the attack chain are introduced.
Then, in the fourth section, we will introduce the algo-
rithm process of vulnerability clustering and combination
in detail. In the fifth section, we conducted an experi-
mental analysis. Finally, summarize the paper.

2 Related Works

Common network security defense methods are passive.
For example, virus detection, intrusion detection, firewall,
etc. are all passive defense methods. Most of these secu-
rity defense methods can only be deployed and defended
on one node, so the vulnerability of the system cannot
be considered from the overall network system. The com-
bined use of vulnerabilities can often bypass these defense
methods. Therefore, with increasing vulnerabilities and
diversification of attack methods, traditional security de-
fenses cannot meet the needs of network security. Many
outstanding scholars are studying the method of vulner-
ability combination. From the combination of vulnera-
bilities to analyze the vulnerability of the system, attack
graphs are the main research method.

The construction of attack graphs is usually divided
into two categories: the first is to represent the network
status from the perspective of known vulnerabilities as
a whole and enumerate state transitions through model
checking [26]. The second is to combine and code individ-
ual vulnerabilities by identifying individual causality [9].
The first form suffers from the state explosion problem
due to the increase in the number of vulnerabilities, so
the second form is more and more popular because of its
better scalability.

Attack graphs are also used for offline and online net-
work security analysis. In offline situations, it can be used
to determine the best location of firewalls and intrusion
detection/defense systems without intervening in the cur-
rent operation of the target network [6], calculate network
security evaluation indicators [13], and perform network
security risk analysis [3].

However, the attack graph is mainly constructed from
the perspective of system attributes and status. Although
it can reflect the combination and utilization of vulnera-
bilities in the network to a certain extent, it is still not



International Journal of Network Security, Vol.24, No.3, PP.389-400, May 2022 (DOI: 10.6633/IJNS.202205 24(3).01) 391

intuitive enough. To analyze the attacker’s behavior pat-
tern and combination of system vulnerabilities, this paper
proposes a method to efficiently construct an attack chain
based on the current vulnerabilities of the system. At
present, academia and industry have two general models
for the concept and classification of cyberattacks, namely
”Cyber Kill Chain” and ”ATT&CK” cyber-attack tech-
niques and tactics. Cyber Kill Chain is an attack model
proposed by Lockheed Martin, which is essentially tar-
geted, staged attack. The attacker’s attack process is
usually planned, and each step has a clear goal. Lockheed
Martin divides the attacker’s planned steps into seven
stages, namely reconnaissance, weaponization, delivery,
exploitation, installation, command and control, and ac-
tions on objective [27]. The Cyber Kill Chain model re-
flects that the attacker’s penetration process is a com-
bination of various attack methods and a combination
of vulnerabilities. MITRE launched the ATT&CK (Ad-
versarial Tactics, Techniques, and Common Knowledge)
model in 2013 [18]. The ATT&CK model describes and
categorizes the technologies and tactics used in the attack
process based on network attack events that occur in the
real world. ATT&CK not only classified and summarized
the tactics and techniques that attackers may use, but
also collected some information about penetration testing
teams and hacker organizations, including the techniques
and tactics they used, attack weapons, and other informa-
tion. At present, the ATT&CK model is still being con-
tinuously updated, and with the continuous development
of the actual attack methods, the techniques and tactics
are continuously refined. Using the general classification
of attacker behavior in ATT&CK can help security teams
such as cyber incident response teams, security opera-
tions centers, red and blue teams, threat hunters, and IT
departments to better test their detection and response
mechanisms against cyber attacks. This paper will build
attack chains with the help of the seven stages of the
Cyber Kill Chain and the techniques and tactics in the
ATT&CK model.

3 The Architecture of The Attack
Chain

3.1 Formal Description of Vulnerability

Since CVE and CNNVD describe vulnerabilities in the
form of text, this paper uses an automated framework
proposed by Joshi et al. [7], which can extract entities,
concepts, and relationships related to network security
from text sources describing vulnerabilities. To enable
vulnerabilities to be easily clustered and combined, and
to express the prerequisites and consequences of exploit-
ing vulnerabilities, we designed a description method for
vulnerabilities and atomic attacks, and the form is as in
Equation (1).

Vt = (ePre
t , λ, δ, σ, ePost

t ) (1)

Vt means vulnerability. The vulnerability Vt requires the
implementation of λ tactics under ePre

t conditions, use δ
tools to attack σ targets, and the follow-up result can be
ePost
t , as in Equation (2).

ePre
t × {λ, δ, σ} → ePost

t (2)

Among them, each attribute value has the following char-
acteristics:

λ ∈ Tech, Tech is the collection of network attack
techniques and tactics in the ATT&CK framework, which
is used to launch attacks by exploiting the vulnerability.

δ ∈ Tool, Tool represents the set of penetration testing
tools or network attack weapon library that an attacker
may use.

σ ∈ Target, Target represents a collection in the sys-
tem that can be used as an attack target. It can be a host
in the target network, or the operating system, software,
or running service on the host.

ePre
t = {c1, c2, ..., cn}, ePost

t = {c1, c2, ..., cn}, c ∈ Σ
and Σ represent the collection of target system assets and
all available resources or permissions of the system, such
as user rights, administrator permissions, system data,
etc.

Such a description can describe not only vulnerabilities
but also atomic attacks, such as detection and scanning
mentioned above. These attacks are indispensable in the
process of constructing the attack chain.

3.2 Attack Chain Construction Based on
Vulnerability Combination

As shown in Figure 1, this paper is divided into three pro-
cesses when constructing the attack chain, which are the
construction of a vulnerability database, the clustering of
vulnerabilities, and the combination of vulnerabilities to
form the attack chain.

Figure 1: Attack chain construction process

Vulnerability database construction. For a given net-
work system, security analysts use vulnerability scanning
tool Nmap to perform host detection, port scanning and
vulnerability detection on network systems. Security an-
alysts will count the information of all nodes in the entire
network system. The nodes here include PCs, servers,
switches, and routers. Security analysts mainly count
the operating system version, installed software version,
which services are running, and what vulnerabilities exist
on the node. Security analysts can easily find the cor-
responding vulnerability and atomic attack information



International Journal of Network Security, Vol.24, No.3, PP.389-400, May 2022 (DOI: 10.6633/IJNS.202205 24(3).01) 392

from the vulnerability database disclosed by CVE and
CNNVD. Then use an automated framework proposed
by Joshi et al. to extract entities, concepts, and rela-
tionships related to network security in the text source
of the vulnerability. According to the formal description
method of the above vulnerabilities, all vulnerabilities and
atomic attacks are formalized and stored in the vulnera-
bility database in the form of entries. At the same time,
the Tech, Tool, Target, and Σ generalization hierarchies
are constructed through the formal description of vulner-
abilities and atomic attacks, and these generalization hi-
erarchies will be used in subsequent cluster analysis.

Vulnerability clustering. This paper will cluster vulner-
abilities based on the clustering algorithm of generalized
hierarchical structure. For the target network system, if
the scale is large, the vulnerability database of the target
system will be very large and complex. Assuming that
the size of the vulnerability is N, it is known that there
are a variety of algorithms that can find the path from
one point to the rest. Among them, the most classic way
to find the single source shortest path is Dijkstra, and its
time complexity is O(N2). To traverse all attack paths,
the time complexity will reach O(N3). Although this time
scale can be solved in polynomial time, the expansion of
the scale has reached the cubic level. So when faced with
large-scale vulnerabilities, it is very inefficient to use this
method to solve all attack chains. Moreover, a large num-
ber of offensive and defensive practices have shown that
there are certain similarities between many vulnerabili-
ties. Attackers use similar vulnerabilities to achieve the
same effect. To reduce the possibility of exposure in net-
work systems, attackers usually do not reuse similar vul-
nerabilities. Here we may as well assume that there are
M groups of vulnerabilities after clustering, and the vul-
nerabilities between the same groups are not reachable.
Then when the single-source shortest path calculation is
performed, the time complexity will become O(M2). Sim-
ilarly, when traversing all attack paths, the time complex-
ity is O(M3). Although the order of magnitude is still
cubic, the size of M will not increase significantly as the
size of the vulnerability increases. It can even be consid-
ered to a certain extent that the size of M is fixed, then
O(M3) will be reduced to a constant level. Therefore,
the clustering of vulnerabilities is very necessary, but the
similarity of vulnerabilities is difficult to define. We will
introduce in detail how to cluster vulnerabilities in the
fourth section of the vulnerability clustering algorithm.

Vulnerability combination. For vulnerabilities after
clustering, we consider using the idea of combined testing
[5] to generate a sequence of vulnerability combinations
as test cases for further analysis. The number of combi-
nations of vulnerabilities happens to limit the length of
the attack path, so we don’t have to worry about those
ultra-long attack paths. In each group of combinations,
there may be vulnerabilities that are related to each other.
In the t-way coverage combination test, 2-way coverage
can achieve pairwise combinations of all parameters, and
the overall number of test cases is much smaller than the

combination of all parameters. At the same time, 2-way
coverage can ensure that the generated combination con-
tains an attack chain with a length of at least 2. Then we
use answer set programming to further filter and merge to
get a collection of attack chains. Therefore, the method
of combining vulnerabilities and constructing an attack
chain using the idea of combined testing can achieve the
optimization of the attack chain construction process to
a certain extent.

4 Vulnerability Clustering and
Combination

4.1 Vulnerability Clustering Algorithm

Julisch et al. proposed an algorithm for clustering alarms
[8]. The motivation for proposing this algorithm stems
from the observation that the alarms of a given root cause
are usually similar, but a large number of alarms affects
the efficiency of the operation and maintenance person-
nel to maintain the system. Therefore, the alarms can
be clustered, and the alarms with the same root cause
can be summarized into a generalized structure that can
cover the content of the alarm, and finally, an alarm
summary with only a few generalized structures can be
formed. We noticed that the vulnerability description
method used in this paper is similar to the alarm struc-
ture input by the clustering algorithm. Julisch uses a row
of attributes with multiple values to represent an alarm.
Similar to the way we use five-tuples for vulnerability de-
scriptions, we also use a row of attributes with multiple
values. But the difference is that in our vulnerability de-
scription method, ePre

t and ePost
t are not attributes of a

single value. And when the attribute value has multiple
parent nodes, the original algorithm cannot generalize the
vulnerability attribute. Meanwhile, some vulnerabilities
may be too unique to be clustered into a group with other
vulnerabilities. If a uniform minimum coverage index is
adopted, it may lead to over generalization and make clus-
tering meaningless.

Given these three points, we have made the following
improvements:

1) When generalizing ePre
t and ePost

t , each attribute
value of them is replaced by a parent node. If any
node is generalized as the descendant node of other
nodes, these attributes are deleted and only the at-
tribute value with the best generality is retained. Af-
ter generalizing different vulnerabilities, comparing
whether a or B is equal requires comparing whether
each value in the set is equal;

2) When a node has more than one parent node to se-
lect for generalization, one parent node is randomly
selected for generalization;

3) Set the parameter minimum coverage ratio p, which
means that all classes don’t need to reach the min-
imum coverage to finish clustering. As long as the



International Journal of Network Security, Vol.24, No.3, PP.389-400, May 2022 (DOI: 10.6633/IJNS.202205 24(3).01) 393

Algorithm 1 Vulnerability Clustering Algorithm

Input: L: A list of vulnerabilities;
Input: G0: Generalization hierarchy of Σ;
Input: G1: Generalization hierarchy of Tech;
Input: G2: Generalization hierarchy of Tool;
Input: G3: Generalization hierarchy of Target;
Input: min size: Minimum coverage;
Input: p: Minimum coverage ratio;
Output: A solustion for(L,G0, G1, G2, G3,min size, p);

1: T := L;
2: for all vulnerabilities v in T do
3: v[count] := 1;
4: end for
5: while count(v[count] > minsize)/sizeof(T ) < p do
6: Use heuristics to select an attribute Ai, i ∈

{0, 1, 2, 3};
7: for all vulnerabilities v in T do
8: v[Ai] := a random father of v[Ai] in Gi

9: while identical v, v′ exist do
10: Set v[count] := v[count] + v′[count] and

delete v′ from T ;
11: end while
12: end for
13: end while
14: return all generalized vulnerabilities v ∈ T

with p of v[count] > min size;

number of vulnerabilities in some classes reaches the
index, clustering can be stopped.

Our improved algorithm is shown in Algorithm 1.The
heuristic functions used in the algorithm are as in Equa-
tions (3) and (4).

fi(a) = sum{v [count] |Ai = a} (3)

Fi = max{fi(a)|a ∈ Dom(Ai)} (4)

Since the value of the same attribute Ai is different, the
corresponding number of vulnerabilities is different. The
function of fi is to count the number of vulnerabilities
whose attribute Ai corresponds to different values among
all vulnerabilities. Fi is to count the largest number of
vulnerabilities in different attribute values. The heuris-
tic function guides which attribute should be selected for
generalization in each iteration. Through this heuristic
function, as many vulnerabilities as possible can be clas-
sified into the same category at each step. During the
execution of the algorithm, we hope to save the classifica-
tion results of vulnerabilities with a collection coverlist.
The actual operation steps of the algorithm are as follows:

1) Because the generalization hierarchy Gi may not be
a tree structure, a node may have multiple parent
nodes, so the algorithm randomly selects a parent
node for generalization.

2) Each vulnerability object will save a collection
coverlist. When the coverlist is initialized, there

is only a reference to the vulnerability itself. The
meaning is that each vulnerability is in its category
at the beginning, and other categories will be added
during clustering.

3) Use heuristic function to select one of ePre
t ,λ, δ, σ,

ePost
t as Ai, and the Ai value of all vulnerabilities in T
is replaced by the parent value of Ai in its generalized
hierarchy Gi. If Ai is ePre

t or ePost
t , each attribute

value in the selected set is generalized, and each step
determines whether the attribute in the set has an
inclusion relationship. If so, the two attributes are
merged.

4) Scan all vulnerabilities at this time. If the attributes
of any vulnerability are identical, add the coverlist
of the second vulnerability to the coverlist of the
first vulnerability, and delete the second vulnerability
from the vulnerability formal description table.

5) Continue the operation of Steps (3) (4). Because
some vulnerabilities may vary greatly, they will
not be covered unless they are generalized to the
root node. Excessive generalization is meaning-
less, so when the percentage of vulnerabilities whose
coverlist size is greater than min size in all vulner-
abilities reaches p, clustering stops.

6) Output the remaining vulnerabilities in Step (5).
The coverlist of each vulnerability is all the vulner-
abilities of this class.

4.2 Vulnerability Combination Algo-
rithm

4.2.1 Vulnerability Combination Based on ACTS

This paper chooses to use ACTS [19] tool to generate vul-
nerability combinations. ACTS is a test case generation
tool for constructing t-way coverage combination, which
is widely used in system combination testing [4]. Due
to its good performance, this paper chooses to use it to
generate a 2-way coverage combination of vulnerabilities.
ACTS supports the use of multiple algorithms to gener-
ate t-way coverage combinations, these algorithms include
IPOG, IPOG-D, IPOG-F, and IPOG-F2, etc. [10, 11].

The strategy of the IPOG algorithm for constructing
the t-way combination is expansion-based. In each itera-
tion, horizontal expansion and vertical expansion are per-
formed until the generated test cases can cover all t-way
combinations. The strategy framework is described as
follows: First, the categories are sorted non-increasingly
according to the number of parameters in each category.
Then select the first t classes to form all the combina-
tions of the parameters in these classes, and expand the
combination level to the t+1 parameter. If the horizontal
expansion cannot guarantee to cover the t-way combina-
tion of the first t+1 parameters, then the vertical expan-
sion is performed until it is satisfied. And so on, until
all the t-way combinations of parameters can be covered.



International Journal of Network Security, Vol.24, No.3, PP.389-400, May 2022 (DOI: 10.6633/IJNS.202205 24(3).01) 394

Among them, horizontal expansion refers to the expan-
sion of each existing combination by adding a value for
the new parameter. Vertical growth refers to adding new
combinations to the test set generated by horizontal ex-
pansion when necessary.

Algorithm 2 describes the test generation algorithm
that implements this strategy, named IPOG-Test. The
input of the algorithm is two parameters: an integer t
that specifies the coverage strength, and a parameter set
PS that contains the input parameters and their values.
The output of the algorithm is the t-way test set of the
parameters in PS. Assume that the number of parame-
ters in the set PS is greater than or equal to t. Figure
2 shows the application of the IPOG-Test algorithm in
an example 3-way test system. This example system con-
sists of four parameters, P1, P2, P3, P4, where P1, P2,
P3 have two values 0 and 1, and P4 has three values 0, 1,
and 2. The algorithm first generates all the combinations
between the three parameters P1, P2, and P3, that is,
23 combinations. Then, expand horizontally based on the
original 8 combinations, and introduce the three param-
eters of P4 into the combination. However, after intro-
ducing the three parameters of P4, the combination of P4
and any three parameters before P1, P2, and P3 cannot
be covered. Therefore, vertical expansion is required until
the final combination can cover any combination of three
parameters among these four parameters.

Figure 2: Schematic diagram of IPOG algorithm

Algorithm 2 IPOG Algorithm

Input: t: the strength of Combnation
Input: PS: the parameter set
Output: TS:Numerical test cases set
1: initialize test set TS to be an empty set
2: sort the parameters in set PS in a non-increasing or-

der of their domain sizes, and denote them as P1,
P2,. . . ,Pk

3: add into TS a test for each combination of values of
the first t parameters

4: for t+ 1 ≤ i ≤ k do
5: let π be the set of all t-way combinations of val-

ues involving parameter Pi and any group of t − 1
parameters among the first i− 1 parameters

6: // horizontal extension for parameter Pi

7: for each test (o=v1, v2, ..., vi−1) in TS do
8: choose a value vi of Pi and replace o with o′=

{v1, v2, ..., vi−1, vi} so that o′ covers the most
number of k-way of values in π

9: remove from π the combinations of values covered
by o′

10: end for
11: // vertical extension for parameter Pi

12: for each combination σ in set π do
13: if there exists o in TS such that it can be changed

to cover σ then
14: change test o to cover σ
15: else
16: add a new test to cover σ
17: end if
18: end for
19: end for
20: return TS

4.2.2 Vulnerability Combination Based on An-
swer Set Programming

Although the number of combinations generated by 2-way
coverage is much smaller than the number of combina-
tions of all vulnerabilities, it is still possible to generate
many redundant and meaningless combinations of vul-
nerabilities. Since there are constraints between vulner-
abilities and vulnerabilities, that is, some vulnerabilities
are the prerequisites for other vulnerabilities, these con-
straints can be found first to assist in solving the vulner-
ability combinations, and this method can further reduce
the number of generated combinations. Considering this
feature, we can use answer set programming to solve the
vulnerability combination.

Answer set programming [15] is a declarative program-
ming method and language, mainly used to solve complex
search problems, and can solve combined problems well.
The main focus of programming with answer sets is the
model of the problem, not the solution of the problem,
which is very different from languages such as Java and
python. When the problem is modeled using the syntax of
answer set programming, the solution of the problem can



International Journal of Network Security, Vol.24, No.3, PP.389-400, May 2022 (DOI: 10.6633/IJNS.202205 24(3).01) 395

be obtained by running the answer set solver. For answer
set programming, the University of Potsdam has devel-
oped an assembly Potassco (Potsdam Answer Set Solving
Collection). Among them, clingo can be used to run ASP
code. Therefore, for a problem that builds an attack chain
based on a combination of vulnerabilities, we can use the
answer set programming method to describe the vulnera-
bility combination problem as an answer set programming
logic program, and then use clingo to solve it. Finally, get
the vulnerability combination. The main special symbols
of answer set programming are shown in Table 1.

Table 1: ASP Special Symbol

Symbol Function
% Represents the start of code comments.
. Represents the end of statement.
:- Represents a constraint.
, Represents ”AND”.
; Represents ”OR”.

#show Represents the output.

According to the vulnerability constraints, we can de-
sign programs to complete the modeling of automatic im-
plementation problems. It mainly consists of four parts:

1) All possibilities of vulnerability combination. As-
suming that four classes are obtained by clustering,
four-parameter predicates need to be constructed.
The values of parameters in each class are separated
by ”;”.

2) Vulnerability constraints. The basic requirement of
the attack chain is that the result of the previous
exploit can be the precondition of the next atomic
attack.

3) Constraints of problem modeling. These constraints
are mainly used to eliminate the vulnerability combi-
nations that do not contain the constraints between
vulnerabilities in (1), and a group of combinations
needs to contain more than one directed edge. When
designing an answer set programming program, we
can set the number of constraints at least contained
in each group.

4) The final output is based on the result of the vulner-
ability combination attack chain construction.

5 Experiments and analysis

5.1 Experimental Environment Design

We designed an experimental environment, as shown in
the Figure 3. The experimental environment is mainly
composed of the attacker and target system. Attackers

Table 2: ASP special symbol

Machine IP
Attacker 10.10.10.128
Web Server
(OWASPBWA)

10.10.10.129

Back-end Server
(Win2k3 Metasploitable)

10.10.10.130

Gateway
10.10.10.254
192.168.10.254

Intranet Client
(WinXP Metasploitable)

192.168.10.128

are mainly computers with pre-installed penetration test-
ing tools, such as Kali Linux or BackTrace. The tar-
get system is mainly composed of 4 machines, which are
website server (OWASPBWA), back-end server (Win2k3
Metasploitable), gateway server (Linux Metasploitable),
and intranet client (WinXP Metasploitable).

Figure 3: Experimental environment

OWASP BWA brings together a large number of train-
ing experimental environments and real web applications
with known security vulnerabilities. There are various
pre-set web applications with vulnerabilities, which are
divided according to the security level, and the defect code
programs at each security level are given. Win2k3 Metas-
ploitable, Linux Metasploitable, WinXP Metasploitable,
etc. are a series of virtual target machine images, these
virtual machines contain a large number of unfixed secu-
rity vulnerabilities.

Set two network segments through VMware’s virtual
network setting function, and distinguish the internal net-
work and external network of the target system through
the gateway. Intranet clients can access the internal net-
work through the gateway, but the attacker cannot di-
rectly access intranet clients. The IP address of each ma-
chine is set as Table 2.

The virtual machine of the target system is specially
selected by us. These virtual machines have some classic



International Journal of Network Security, Vol.24, No.3, PP.389-400, May 2022 (DOI: 10.6633/IJNS.202205 24(3).01) 396

vulnerabilities. According to our collation and continu-
ous experiments, we mainly used 37 vulnerabilities in our
experiment.

5.2 Experimental Data

The input required for the attack chain construction tech-
nology based on the vulnerability combination is the vul-
nerability list, the technical and tactical generalization hi-
erarchy, the attack weapon generalization hierarchy, the
target system asset generalization hierarchy, and the at-
tack target generalization hierarchy. The construction of
these inputs has been introduced in Section 3. To fa-
cilitate the operation of the program, the data is stored
in XML format. Due to space limitations, this section
mainly shows the vulnerability list and technical and tac-
tical generalization hierarchy.

List of vulnerabilities/atomic attacks. The XML docu-
ment of the attack list stores all the vulnerabilities/atomic
attacks of the system. After scanning the target system
with tools such as Nmap, W3AF, and Metasploit, there
is no hierarchical division of atomic attacks generated by
combining manual operations, and they are unified under
the root node. The assets used by each atomic attack are
stored in the ”Conditions” node, the techniques and tac-
tics used are stored in the ”tech” node, the attack tools
are stored in the ”tool” node, the targets are stored in
the ”target” node, and the results generated are stored in
the ”results” node. For example, CVE-2009-1979 on the
back-end server, its manifestation is shown in the Fig-
ure 4.

Figure 4: Vulnerability list

Technical and tactical generalization hierarchy. We
designed a crawler script to crawl the data in
https://attack.mitre.org/beta/ and build a generalized
hierarchy of attack techniques and tactics based on the
hierarchical structure of the ATT&CK matrix. Part of
the manifestation of this hierarchical structure is shown
in the Figure 5.

5.3 Vulnerability Clustering Experiment

This experiment uses the vulnerability clustering algo-
rithm described in Section 4.1 to cluster vulnerabilities.
According to different parameter settings, different clus-
tering results can be obtained. The main parameters to

Figure 5: ATT&CK generalization hierarchy

be set are min size and p, which are the minimum cov-
erage and the minimum coverage ratio. When min size
is set to 1, it means that there is only one vulnerability
in each class. At this time, clustering is meaningless, so
the value of min size must be greater than 1. We tested
multiple sets of use cases through dichotomy, and finally
determined min size and p. Take two of them as exam-
ples.

In the first group of clustering experiments, the pa-
rameters we adopted were min size = 2, p = 1. The
experiment finally divided vulnerabilities into 2 classes.
The vulnerabilities of each class are shown in Table 3, and
the numbers represent different vulnerabilities. It can be
seen that at this time, it has been over-generalized, and
only divided into two groups is useless for vulnerability
combinations.

Table 3: Clustering Result 1

Class Vulnerabilities
1 1,8,2,9,4,5,3,6,24,7,21

2
10,11,35,17,18,34,12,14,16,
25,26,28,30,32,13,15,27,31,
29,33,19,20,36,37,22,23

In the second group of clustering experiments, the pa-
rameters we adopted were min size=2, p=0.25. The ex-
periment finally divided atomic attacks into 11 categories.
The specific atomic attacks of each category are shown in
Table 4. In this set of experiments, the number of cat-
egories 1, 4, 5, 6, and 10 exceeded min size. However,
there is only one vulnerability in the 2, 3, 7, 8, 9, and 11
categories. Among them, the fourth category contains 13
vulnerabilities. By analyzing the list of vulnerabilities, it
can be known that the main target of these vulnerabil-
ities is 10.10.10.130 and 10.10.10.254, which can achieve
control of the target, but use different software vulner-
abilities, different services have been attacked, different
techniques and tactics have been used, and the use condi-
tions and consequences are also different. The remaining
vulnerabilities in categories 1, 5, 6, and 10 also achieved
the goal of clustering ”similar” vulnerabilities. This set of



International Journal of Network Security, Vol.24, No.3, PP.389-400, May 2022 (DOI: 10.6633/IJNS.202205 24(3).01) 397

Table 4: Clustering Result 2

Class Vulnerabilities
1 1,8,2,9,4,5,3,6,24
2 7
3 10

4
11,35,17,18,34,12,14,
16,25,26,28,30,32

5 13,15,27,31
6 19,20,36
7 21
8 22
9 23
10 29,33
11 37

clustering results is relatively good, and the experiment
in the vulnerability combination stage will adopt this set
of clustering results.

5.4 Vulnerability Combination Experi-
ment

We have designed two methods for vulnerability combina-
tion, which are mainly based on the combination test tool
ACTS’s vulnerability combination and the further screen-
ing of the vulnerability combination based on answer set
programming.

This experiment uses the vulnerability combination
method described in Section 4.2 and invokes the inter-
faces of the ACTS tool, and selects the vulnerabilities
from each class of the clustering results for combination.
Since 2-way coverage has been able to find pairwise combi-
nations of vulnerabilities between different classes, it can
find all effective attack paths with a length of at least 2.
Therefore, 2-way coverage is used for vulnerability com-
bination. Part of the result is shown in Figure 6.

Figure 6: Combination result

Each row of the result represents a combination of vul-
nerabilities. A total of 2808 2-way combinations were
generated. From these combinations, attack chains can
be obtained, and each attack chain appears differently.
However, the vulnerabilities combined in this way have

Table 5: Attack Chain Statistics 2

Index F Attack Chain Index F Attack Chain
1 1102 7→21 30 312 6→7→21
2 1102 7→22 31 312 6→7→22
3 1102 7→23 32 312 6→7→23
4 312 6→7 33 156 29→6→7→22
5 216 10→17 34 156 29→6→7→23
6 216 35→37 35 156 29→6→7→21
7 156 29→6 36 78 31→6→7→22
8 108 33→17 37 78 27→6→7→22
9 78 5→27 38 78 31→6→7→21
10 78 31→6 39 78 27→6→7→23
11 78 27→6 40 78 31→6→7→23
12 78 4→13 41 78 27→6→7→21
13 78 4→15 42 72 10→17→19
14 72 17→19 43 72 10→17→20
15 72 17→20 44 36 33→17→19
16 72 18→19 45 36 33→17→20
17 72 35→36 46 24 24→35→37
18 72 18→20 47 24 32→6→7→23
19 24 30→6 48 24 28→6→7→21
20 24 4→12 49 24 30→6→7→23
21 24 24→35 50 24 32→6→7→22
22 24 32→6 51 24 30→6→7→22
23 24 8→18 52 24 28→6→7→22
24 24 8→25 53 24 32→6→7→21
25 24 8→26 54 24 30→6→7→21
26 24 4→11 55 24 28→6→7→23
27 24 4→14 56 8 8→18→20
28 24 28→6 57 8 24→35→36
29 8 8→18→19

overlapping parts and can be further merged. According
to the vulnerability combination method based on answer
set programming mentioned in Section 4.2.2, we designed
the ASP program and used clingo to solve it. In this
way, the relationship between the 2-way combinations of
vulnerabilities is no longer considered, but only whether
the number of constraints in a set of combinations meets
the requirements. We set each group needs to contain at
least 4 constraints. The results are shown in Table 5. In
Table 5, F represents the frequency of each attack chain.
Each number in the attack chain represents a vulnerabil-
ity. It can be seen from Table 5 that some attack chains
overlap, so attack chains can be further merged.

It can be seen that the vulnerability combination
method based on answer set programming is the same as
the attack chain generated by the ACTS-based vulnerabil-
ity combination method, but the total number generated
by the vulnerability combination method based on answer
set programming is small, which reduces the sample space
while achieving the same effect.

To further analyze the attack chains that exist on the
experimental target system, the generated attack chains
need to be merged. The final result is shown in Figure 7.
Attack chain merge result graph, each node represents a
vulnerability. We will use the attack chain to test in the
experimental environment.



International Journal of Network Security, Vol.24, No.3, PP.389-400, May 2022 (DOI: 10.6633/IJNS.202205 24(3).01) 398

Figure 7: Attack chains

5.5 Attack Chain Implementation Exper-
iment

In response to the 37 vulnerabilities of this experimental
platform, we have compiled a manual for their utiliza-
tion methods. The attack can be easily realized with the
help of the manual. This section does not enumerate all
the processes of the attack chain. We choose the longest
attack chain {5,27,6,7,21} for illustration, and the most
difficult attack chain is used to illustrate the effectiveness
of the attack process. The attack process is as follows:

1 Vulnerability No.5: Obtain the services running on
each port of the gateway server. Use Nmap to
use the ”-sT -PN -spoof-mac 0” option to detect
10.10.10.254, then we can get the result of the port
service of the gateway.

2 Vulnerability No.27: Exploit CVE-2007-2447 and ob-
tain the root of the gateway server. According to the
results of the previous step, it can be seen that the
gateway has opened port 139 to the outside world.
Usually, samba runs on this port. Some versions of
the samba service have the CVE-2007-2447 vulnera-
bility. Use Metasploit’s payload to attack the gate-
way. The gateway does have a vulnerability, so the
control of the gateway is obtained.

3 Vulnerability No.6: Obtain the IP of the host that
has communicated with the gateway. Since the at-
tacker cannot directly scan the intranet, we can find
the IP of the intranet client through the ”arp” com-
mand of the gateway.

4 Vulnerability No.7: Scan the port of 192.168.10.128.
After obtaining the IP of the intranet client, we can
use Nmap to scan the client.

5 Vulnerability No.21: Exploit MS08-067(CVE-2008-
4250) and get control of the intranet client. After
scanning the client in the previous step, it is known
that the internal network client machine opens port
445. This port is an SMB channel. The SMB channel
may have the MS08-067 vulnerability. Then we can
use Metasploit’s payload to attack the intranet client.
It is found that the attack is successful and the client
control is obtained. The attack result is shown in the
Figure 8.

Figure 8: Result: Penetration into the intranet

Through the experimental process, the attack chain
realized the penetration of the target system from the
outside to the inside, and finally gained control of the
intranet client. This attack chain realizes step-by-step
penetration from the external network into the internal
network and gains the control authority of the internal
network machine, which has a strong threat. We carry
out experiments according to the attack chain screened
in Figure ??, and all of them can achieve the purpose of
the attack. To verify the effectiveness of our attack chain
method for the target network construction, we analyze
the different vulnerable attack paths in the target network
as a whole, which provides a basis for the subsequent net-
work defense process.

6 Conclusion

To achieve high efficiency and visualization of target net-
work security analysis, this paper proposes an attack
chain construction method based on the combination of
vulnerabilities based on the research status of vulnerabil-
ities and attack models. This paper uses the 5-tuple field
to formally describe the vulnerabilities, using this method
to build a vulnerability library for the target network.
At the same time, we build a generalization hierarchy for
each attribute on the 5-tuple, which makes the vulnerabil-
ities can be clustered. Then we combined the generalized
hierarchy of each attribute in the vulnerability, and we
proposed a clustering algorithm to group ”similar” vul-
nerabilities into one category, so the vulnerabilities are
grouped into a limited number of categories.

We use the combination test tool ACTS for 2-way vul-
nerabilities combination, which guarantees a way to find



International Journal of Network Security, Vol.24, No.3, PP.389-400, May 2022 (DOI: 10.6633/IJNS.202205 24(3).01) 399

all the two-way combinations of vulnerabilities. Further
use answer set programming to solve vulnerabilities com-
binations to remove redundant and meaningless combina-
tions. Finally, an experimental simulation environment
was built, and the attack chain constructed by the vul-
nerability combination was used to conduct attack ex-
periments. The experiment shows the effectiveness of the
attack chain construction method and provides a basis for
the subsequent network system defense. Due to the lim-
itation of the experimental environment, the target net-
work designed in this paper is not complex enough. In
the future, we will build a larger network attack and de-
fense environment, and introduce industrial control sys-
tems, rail transit systems, and other simulation scenarios
that are closely related to the construction of network
security and national defense. In the complex network
environment, the validity and practicability of the attack
chain construction technology based on the combination
of vulnerabilities are further verified.

References

[1] A. Alshamrani, S. Myneni, A. Chowdhary, and
D. Huang, “A survey on advanced persistent threats:
Techniques, solutions, challenges, and research op-
portunities,” IEEE Communications Surveys & Tu-
torials, vol. 21, no. 2, pp. 1851–1877, 2019.

[2] F. J. Aparicio-Navarro, K. G. Kyriakopoulos,
I. Ghafir, S. Lambotharan, and J. A. Chambers,
“Multi-stage attack detection using contextual in-
formation,” in MILCOM 2018-2018 IEEE Military
Communications Conference (MILCOM). IEEE,
2018, pp. 1–9.

[3] K. Beckers, M. Heisel, L. Krautsevich, F. Martinelli,
R. Meis, and A. Yautsiukhin, “Determining the prob-
ability of smart grid attacks by combining attack tree
and attack graph analysis,” in International Work-
shop on Smart Grid Security. Springer, 2014, pp.
30–47.

[4] M. N. Borazjany, L. Yu, Y. Lei, R. Kacker, and
R. Kuhn, “Combinatorial testing of acts: A case
study,” in 2012 IEEE Fifth International Confer-
ence on Software Testing, Verification and Valida-
tion. IEEE, 2012, pp. 591–600.

[5] M. Grindal, J. Offutt, and S. F. Andler, “Combina-
tion testing strategies: a survey,” Software Testing,
Verification and Reliability, vol. 15, no. 3, pp. 167–
199, 2005.

[6] S. Jajodia and S. Noel, “Topological vulnerability
analysis,” in Cyber situational awareness. Springer,
2010, pp. 139–154.

[7] A. Joshi, R. Lal, T. Finin, and A. Joshi, “Extracting
cybersecurity related linked data from text,” in 2013
IEEE Seventh International Conference on Semantic
Computing. IEEE, 2013, pp. 252–259.

[8] K. Julisch, “Clustering intrusion detection alarms to
support root cause analysis,” ACM transactions on

information and system security (TISSEC), vol. 6,
no. 4, pp. 443–471, 2003.

[9] M. Khouzani, Z. Liu, and P. Malacaria, “Scalable
min-max multi-objective cyber-security optimisation
over probabilistic attack graphs,” European Journal
of Operational Research, vol. 278, no. 3, pp. 894–903,
2019.

[10] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and
J. Lawrence, “IPOG: A general strategy for t-way
software testing,” in 14th Annual IEEE International
Conference and Workshops on the Engineering of
Computer-Based Systems (ECBS’07). IEEE, 2007,
pp. 549–556.

[11] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, J.
Lawrence, “IPOG-IPOG-D: Efficient test generation
for multi-way combinatorial testing,” Software Test-
ing, Verification and Reliability, vol. 18, no. 3, pp.
125–148, 2008.

[12] A. Lemay, J. Calvet, F. Menet, and J. M. Fernan-
dez, “Survey of publicly available reports on ad-
vanced persistent threat actors,” Computers & Se-
curity, vol. 72, pp. 26–59, 2018.

[13] E. Lemay, W. Unkenholz, D. Parks, C. Muehrcke,
K. Keefe, and W. H. Sanders, “Adversary-driven
state-based system security evaluation,” in Proceed-
ings of the 6th International Workshop on Security
Measurements and Metrics, 2010, pp. 1–9.

[14] T. Li, J. Ma, Q. Pei, Y. Shen, C. Lin, S. Ma, and
M. S. Obaidat, “Aclog: attack chain construction
based on log correlation,” in 2019 IEEE Global Com-
munications Conference (GLOBECOM). IEEE,
2019, pp. 1–6.

[15] V. Lifschitz, Answer set programming. Springer
Berlin, 2019.

[16] Y. Liu, M. Zhang, D. Li, K. Jee, Z. Li, Z. Wu,
J. Rhee, and P. Mittal, “Towards a timely causal-
ity analysis for enterprise security.” in NDSS, 2018.

[17] S. M. Milajerdi, R. Gjomemo, B. Eshete, R. Sekar,
and V. Venkatakrishnan, “Holmes: real-time apt de-
tection through correlation of suspicious information
flows,” in 2019 IEEE Symposium on Security and
Privacy (SP). IEEE, 2019, pp. 1137–1152.

[18] MITRE ATT&CK, ATT&CK, Feb. 19, 2022. (https:
//attack.mitre.org/)

[19] NIST, Website for the NIST Automated Com-
bintorial Testing (ACTs) Project, Feb. 19,
2022. (https://www.nist.gov/programs-projects/
automated-combinatorial-testing-software-acts)

[20] J. P. P. M. Orvalho and R. M. S. Silva, “Flexible ap-
proach to multi-stage network attack recognition,”
International Journal of Computer Science and In-
formation Security (IJCSIS), vol. 17, no. 8, 2019.

[21] T. Pasquier, X. Han, T. Moyer, A. Bates, O. Her-
mant, D. Eyers, J. Bacon, and M. Seltzer, “Runtime
analysis of whole-system provenance,” in Proceedings
of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, 2018, pp. 1601–1616.

https://attack.mitre.org/
https://attack.mitre.org/
https://www.nist.gov/programs-projects/automated-combinatorial-testing-software-acts
https://www.nist.gov/programs-projects/automated-combinatorial-testing-software-acts


International Journal of Network Security, Vol.24, No.3, PP.389-400, May 2022 (DOI: 10.6633/IJNS.202205 24(3).01) 400

[22] C. Phillips and L. P. Swiler, “A graph-based system
for network-vulnerability analysis,” in Proceedings of
the 1998 workshop on New security paradigms, 1998,
pp. 71–79.

[23] S. Smarter and S. Malware, “Security threat report
2014.”

[24] P. S. Shinde and S. B. Ardhapurkar, “Cyber security
analysis using vulnerability assessment and penetra-
tion testing,” in 2016 World Conference on Futur-
istic Trends in Research and Innovation for Social
Welfare (Startup Conclave). IEEE, 2016, pp. 1–5.

[25] V. Subrahmanian, M. Ovelgonne, T. Dumitras, and
B. A. Prakash, “The global cyber-vulnerability re-
port,” 2015.

[26] L. P. Swiler, C. Phillips, D. Ellis, and S. Chakerian,
“Computer-attack graph generation tool,” in Pro-
ceedings DARPA Information Survivability Confer-
ence and Exposition II. DISCEX’01, vol. 2. IEEE,
2001, pp. 307–321.

[27] T. Yadav and A. M. Rao, “Technical aspects of cyber
kill chain,” in International Symposium on Security
in Computing and Communication. Springer, 2015,
pp. 438–452.

Biography

Jing Zhao received the Ph.D. degree in computer sci-
ence and technology from the Harbin Institute of Tech-
nology of China in 2006. In 2010, she was with the De-
partment of Electrical and Computer Engineering, Duke
University, Durham, North Carolina, working as a post-
doctoral researcher under the supervision of Dr. Kishor
Trivedi. From 2006 to 2018, she was a professor at the
School of Computer Science and Technology, Harbin En-
gineering University, China. She is currently a professor
at the School of Software Technology, Dalian University
of Technology, China. Her research interests include cy-
ber security and Internet of vehicles security.

Hao Sun is currently a master of Software Engineering,
Dalian University of Technology. He received a bachelor’s
degree from Harbin Engineering University in 2019. His
research interests include network security and Internet
of Things security.

Yang Cheng received a master’s degree in computer sci-
ence and technology from Harbin Engineering University
in 2021. He received a bachelor’s degree from Harbin
Engineering University in 2018. His research direction is
mainly network security.


	Introduction
	Related Works
	The Architecture of The Attack Chain
	Formal Description of Vulnerability
	Attack Chain Construction Based on Vulnerability Combination

	Vulnerability Clustering and Combination
	Vulnerability Clustering Algorithm
	Vulnerability Combination Algorithm
	Vulnerability Combination Based on ACTS
	Vulnerability Combination Based on Answer Set Programming


	Experiments and analysis
	Experimental Environment Design
	Experimental Data
	Vulnerability Clustering Experiment
	Vulnerability Combination Experiment
	Attack Chain Implementation Experiment

	Conclusion
	REFERENCES

