®

Check for
updates

CMM: A Combination-Based Mutation
Method for SQL Injection

Jing Zhao'2®) Tianran Dong!?, Yang Cheng!?, and Yanbin Wang?

! Software Engineering, Dalian University of Technology, Dalian, China
zhaoj9988@dlut.edu.cn
2 Cyberspace Security Research Center, Peng Cheng Laboratory, Shenzhen, China
3 Department of Computer Science and Technology,
Harbin Engineering University, Harbin, China
{dongtianran, chengyangheu}@hrbeu.edu.cn
4 Department of Industrial Engineering, Harbin Institute of Technology,
Harbin, China
wangyb@hit.edu.cn

Abstract. With the rapid development of Web applications, SQL injec-
tion (SQLi) has been a serious security threat for years. Many systems
use superimposed rules to prevent SQLi like backlists filtering rules and
filter functions. However, these methods can not completely eliminate
SQLi vulnerabilities. Many researchers and security experts hope to find
a way to find SQLi vulnerabilities efficiently. Among them, mutation-
based fuzzing plays an important role in Web security testing, especially
for SQLi. Although this approach expands the space for test cases and
improves vulnerability coverage to some extent, there are still some prob-
lems such as mutation operators cannot be fully covered, test cases space
explosions, etc. In this paper, we present a new technique Combinato-
rial Mutation Method (CMM) to generate test set for SQLi. The test
set applies t-way and variable strength Combinatorial Testing. It makes
the mutation progress more aggressive and automated and generates test
cases with better F-measure Metric and Efficiency Metric. We apply our
approach to three open source benchmarks and compare it with sqlmap,
FuzzDB and ART4SQLi. The experiment results demonstrate that the
approach is effective in finding SQLi vulnerabilities with multiple filter-
ing rules.

Keywords: SQL injection - Mutation method - Combinatorial Testing
(CT) - t-way Combinatorial Testing (t-way CT) - Variable Strength
Combinatorial Testing (VSCT)

1 Introduction

Database-driven Web applications have been rapidly adopted in a wide range of
areas including on-line stores, e-commerce, etc. However, this popularity makes
them more attractive to attackers. The number of reported Web attacks is grow-
ing sharply [8]: for instance, a recent Web application attack report observed an

© Springer Nature Switzerland AG 2020
H. Miao et al. (Eds.): SOFL+MSVL 2019 Workshop, LNCS 12028, pp. 345-361, 2020.
https://doi.org/10.1007/978-3-030-41418-4_23

346 J. Zhao et al.

average increase of around 17% in different types of Web attacks over the nine-
month period from August 1, 2013 to April 30, 2014.

Within the class of Web based vulnerabilities, SQL injection (SQLi) vul-
nerabilities have been labeled as one of the most dangerous vulnerabilities by
the Open Web Application Security Project (OWASP). Although the cause and
mechanism of SQLi is single, the number of SQLi attack events increased con-
tinuously. To solving SQLi problems, static analysis is a traditional security
mechanism with trivial process, in which hybrid constraint solver would be used
when an SQL query is submitted. Therefore, dynamic testing methods such as
black-box testing have become a popular choice. For example, mutation-based
fuzzy testing [22] can automatically generate mutations and analyze them.

There have been many studies devoted to detecting SQLi vulnerabilities
[9,12,23]. Adaptive Random Testing (ART) [1] is an improvement based on
random testing. Researchers believe that software bugs are continuous and can
be reflected in the input domain. If the test cases are evenly distributed across
the input field, they will have strong error detection capabilities. Therefore,
ART4SQLi [25] selects the farthest test case from the selected one. ART4SQLi
uses this method to trigger SQLi vulnerabilities as quickly as possible, i.e. the
smallest possible F-measure (this metric will be detailed later).

Nowadays, multiple filtering rules can pick out many statements with sen-
sitive characters, so a mutated test case will be dropped if the sensitive part
remains after the mutation operation. Meanwhile the types of mutation opera-
tor increasing is causing the test space explosion. We integrate the other black
box testing with the mutation approach to reduce the probability of the test case
being filtered and decrease its space. In addition, we focus on generating test
cases by integrating the Combinatorial testing (CT) with the mutation method
and detecting potential SQLi vulnerabilities by generating more effective test
cases. The goal of the CT is to select a small number of test cases from the huge
combined space, and detect the faults that may be triggered by the interaction
of various factors. This method reduces the size of the test cases set and will
have a good F-measure and efficiency.

In this paper, we present a new input mutation method CMM aimed at
increasing the likelihood of triggering vulnerabilities beyond filtering rules. We
import the original mutation methods from sglmap!, and classify them into five
groups according to their mutation behavior. Motivated by CT, we want to find
the best combination of mutation operators with the least test cases during the
test. Then we build a CT model for these mutation methods. The model is input
into a combinatorial test generation tool ACTS [24], and a combined object is
generated using t-way and variable strength CT, which is simply a symbol array.
Every row of the generated array is used to output a test case. We use the array to
instruct our test cases mutation progress. The experiment result demonstrated
that the better efficiency and effectiveness in triggering vulnerabilities of our
method when there are multiple filtering rules. This paper is structured as fol-
lows. Section 2 provides background information on SQLi vulnerabilities and CT.

! http://sqlmap.org)/.

CMM: A Combination-Based Mutation Method for SQL Injection 347

Section 3 discusses in detail our approach, followed by Sect. 4 where we introduce
our experiments and results. Section 5 concludes this paper and discusses future
work.

2 Background and Related Work

2.1 Background

SQLi Vulnerabilities. Two major cause fro SQL injections are the ignorance
towards filtering out user-input, and framing SQL queries dynamically using
string data type by concatenating SQL code and user-input during runtime [6].
For example, a SQL statement is formed as Fig.1 (a simplified example from
one of our Web applications): The user’s input is stored in the string variable
$id. After being filtered by the filter function tsFilter, $id will be concatenated
with the rest of the SQL statement. The SQL statement will be send to database
server to be executed. If the filter function is not strong enough, the SQLi Vul-
nerabilities will be easily exploited.

1 |$id = $_.GET[‘$id ’];
2 |$id = tsFilter ($id);
3 |$getid = ¢ SELECT first_name , last_.name FROM users WHERE

user_id=‘8$id ’ 7;
$result = mysqli_query($getid) or die(mysqli_error());

Fig. 1. Example of an SQLi vulnerability

Combinatorial Testing (CT). Combinatorial testing is motivated by the
selection of a few test cases in such a manner that good coverage is still achiev-
able, while for a general treatment of the field of CT we refer the interest reader
to the recent survey of [17]. The combinatorial test design process can be briefly
described as follows:

(1) Model the input space. The model is expressed in terms of parameter and
parameter values.

(2) The model is input into a combinatorial design procedure to generate a
combinatorial object that is simply an array of symbols.

(3) Every row of the generated array is used to output a test case for a System
Under Test (SUT).

One of the benefits of this approach is that steps 2. and 3. can be completely
automated. In particular, we used the ACTS combinatorial test generation tool.
Currently, ACTS supports t-way test set generation for 1 < ¢ < 6. In addition,
ACTS also supports VSCT, We refer to two definitions from as follows:

348 J. Zhao et al.

Definition 1. (t-way Covering Arrays): For the SUT, the n-tuple (vn,, ...
Un,,-..) s called a t-value schema (t > 0) when some t parameters have fized
values and the others can take on their respective allowable values, represented
as “”7. When t = n, the n-tuple becomes a test case for the SUT as it takes
on specific values for each of its parameters. It is based on the fact that a test
set covering all possible t-way combinations of parameter values for some t is
very effective in identifying interaction faults. t usually takes a value from 2 to
6 [10,14].

Definition 2. (Variable Strength Covering Arrays): VSCA (N;t, vy, vs, ..., Uk,
{C}) is a N x k CA of strength t containing C'. Here C is a subset of the k
columns having strength t' > t and can be CA. A VSCA can have more than one
C, each having same or different strength [5]. For instance, consider a VSCA (27;
2, 3922, CA(27;3,3%)3). It has total 11 parameters: 9 parameters each having 3
values and 2 parameters each having 2 values. The strength of the MCA is 2 and
the number of rows is 27. Of these 11 parameters, there exists three subsets C
having 3 parameters each having 3 values. The strength of the C' is 3. Thus, the
VSCA should cover all the 2-way interactions among 11 parameters and 3-way
interactions among 3 parameters of subset C' [20].

2.2 Related Work

Researchers have proposed a series of techniques to prevent SQL injection vul-
nerabilities. Many existing techniques, such as input filtering, static analysis and
security testing can detect and prevent a subset of the vulnerabilities that lead
to SQLi [21].

The most important reason of SQLi vulnerabilities is insufficient input vali-
dation of data and code in dynamic SQL statements [7]. Thus, the most straight-
forward way is to set up an input filtering proxy in front of Web applications. A
novel approach for detection of SQLIA is proposed by Bisht et al. [2], for min-
ing programmer-intended queries with dynamic evaluation of candidate input.
However, implementation of this method is not always feasible. Specifically, in a
highly accessible web-application in which verification of a run-time query needs
to retrieve its programmer intent or application constraint.

More and more researchers applied software testing technology to Web appli-
cation security. Static analysis focus is to validate the user input type in order to
reduce the chances of SQLi attacks rather than detect them. While the dynamic
analysis method do not need to modify the web applications. However, the vul-
nerabilities found in the web application pages must be fixed manually and not
all of them can be found without predefined attack codes. So the combination
of static and dynamic analysis techniques are used as the basis of a preventative
solution [15].

Random testing is one of the dynamic analysis and Adaptive Random Testing
(ART) is its improvement [4]. ART is based on the observation that test cases
revealing software failures tend to cluster together in the test cases domain.

CMM: A Combination-Based Mutation Method for SQL Injection 349

Inspired by this, we realize that effective payloads tend to cluster in the payload
space and proposed a new method ART4SQLi to accelerate the SQLi vulnera-
bility discovery process [25]. ART4SQLi selects the farthest payload from all the
evaluated ones. But in some test scenarios, the test cases would not distributed
evenly. So ART may not perform as expected [18].

Mutation testing has been proposed and studied extensively [13] as a method
of evaluating the adequacy of test suites where the program under test is mutated
to simulate faults. While detecting software vulnerabilities, it can also measure
the detection capability of the test set. Because of these unique advantages,
mutation testing has been rapidly developed in network security and is widely
used. Shahriar and Zulkernine [22] defined SQLi specific mutation operators to
evaluate the effectiveness of a test suite in finding SQLi vulnerabilities. Holler
et al. [11] proposed an approach LangFuzz to test interpreters for security vul-
nerabilities, and it has been applied successfully to uncover defects in Mozilla
JavaScript and PHP interpreter. However, there are still some problems. First,
as the type of mutation increases, the test cases space will produce a com-
bined explosion. Second, the output of some mutation operators could be filtered
because of sensitive characters. But CT can detect failures triggered by inter-
actions of parameters in the SUT with a covering array test suite generated by
some sampling mechanisms [17].

Kuhn et al. [14] found that the faulty combinations are caused by the combi-
nation of no more than 6 parameters. Three or fewer parameters triggered a total
of almost 90% of the failures in the application. Nie [3] gave a different coverage
definition, which also shows only the coverage definition of the k-value schema
and does not reflect the importance of failure-causing schema in the test cases
set. Qi [19] indicated that variable strength reachability testing reaches a good
tradeoff between the effectiveness and efficiency. It can keep the same capability
of fault detection as exhaustive reachability testing while substantially reduc-
ing the number of synchronization sequences and decreasing the execution time
in most cases. Therefore, to solve the problem of mutation testing mentioned
above, we propose the CMM technique in combination with the characteristics
of CT and mutation method.

3 Approach

3.1 A Simple Example of SQL Injections

SQL injections come from a lack of encoding/escaping of user-controlled input
when included in SQL queries. For example, a SQL statement is formed as
follows:

A simplified example of one of our web applications is shown in Fig. 1. The
user_id is an input provided by users, which is concatenated with the rest of the
SQL statement and then stored in the string variable $id. For instance, the id
value entered by the user is 'OR ‘1’=‘1’, then the query generated by passing the
value of id into the SQL statement, which is: “SELECT first_name, last_name
FROM users WHERE user_id = ‘" OR ‘1’=‘1"". The query logic of the SQL

350 J. Zhao et al.

statement has been changed, because the statement after the OR operation of
the query will always return true. Then the function mysqli_query sends the SQL
statement to the database server, and return all the first_name and last_name
information in the users table. The information obviously exceeds the query
permission of users and the data table has been leaked. But nowdays, there is
always a filter function (such as, $id = tsFilter($id)) between line 1 and line 2
of Fig. 1 to solve this kind of problems. So from the point of view of penetration
testers or attackers, it is necessary to enhance the mutation of the SQL statement
to prevent it from being filtered, then further to access the system information
for attacking.

3.2 Test Case Mutation Methods

Sqlmap is an open source penetration testing tool that automates the process of
detecting and exploiting SQLi flaws and taking over of database. We import the
mutation methods from sqlmap, and classify them into five groups according to
their behavior:

— Comment: This method attach a SQL comment command at the back of
the input test case, there are four comments: “=”, “#”, “%00”, “and ‘Ohav-
ing’=‘Ohaving”’. These comments can make the SQL statement followed the
input be valid or change the structure of the whole SQL. Example like this:
the original input may be “1 and 1=1”, after the mutation it would be “1
and 1=1 %00".

— Stringtamper: This kind of mutation method is aimed at changing the appear-
ance of original input, it will cheat the target system as a normal input.
However, the input is a malicious code. There are eight kinds of methods:
“between”, “bluecoat”, “greatest”, “lowercase”, “nonrecursivereplacement”,
“randomcase”, “randomcomments”, “symboliclogical”.

— Space2: This kind of mutation method is aimed at changing the space in
the input, because the target system will not allow a space in the input.
There are fourteen kinds of methods: “halfversionedmorekeywords”, “mod-

securityversioned”, “modsecurityzeroversioned”, “multiplespaces”, “over-
longutf8”, “space2c”, “space2dash”, “space2morehash”, “space2mssqlblank”,
“space2randomblank” “space2hash”, “space2mssqlhash”,

“space2mysqlblank”, “space2mysqldash”, “space2plus”.

— Apostle: This kind of mutation method is aimed at changing the apostle in the
input. There are two kinds of methods: “apostrophemask”, “apostrophenul-
lencode”.

— Encoding: This kind of mutation method is aimed at changing the encoding
of the original statement. there are five kinds of methods: “base64encode”,
“chardoubleencode”, “charencode”, “charunicodeencode”, “percentage”.

Algorithm 1 introduces the detailed process of the test case mutation meth-
ods. Given an valid test case input, the apply_MO function randomly applies one
or more mutation operators to mutate this test case. Because the input values are

CMM: A Combination-Based Mutation Method for SQL Injection 351
Algorithm 1. Test Case Mutation Method
Input: I:A set of Legal input.
Output: T'S:Test case space.
1:7={}
2: for each input in I do
3: while not max_tries do
4: t = apply-MO(input)
5: if t not in T then
6: Add t into T'S
7 end if
8: end while
9: end for
10: return TS
Table 1. A input model of CT
Parameter | Input Comment Stringtamper
Value 1:“1” or 1=1 or” 0:Not be capable 0:Not be capable
2:41 or 1=1”7 1.4 1: “between”
PR 2:“bluecoat”
3:4%00”
4:“Ohaving’=‘Ohaving”’ 8: “symboliclogical”
Parameter | Space2 Apostle Encoding
Value 0:Not be capable 0:Not be capable 0:Not be capable
1:“halfversionedmorekeywords” | 1: “apostrophemask” 1: “base64encode”
2:“modsecurityversioned” 2:“apostrophenullencode” | 2:“chardoubleencode”
14:“space2randomblank” 5:“percentage”
I Mutation Dﬁeratorx In Test Case Mutation I
I DDD:I madzlilx& Generation convert | Method Test I
I Loader DDDD i 1 Scheme Case Generation| |
I | | | pog ssgoritim Mutatuon Atgoridm | |
I Combinatorial Model I I I
| Combinatorial Mutation Model | I Combinatorial Mutation Test cases |
L ____) —1
i- ____________________ Ir= === C T
| | I intrude |
J
Page g Page "
l Gane™ : l
| Monitor l
l Web for Pentester DVWA/ DVWA-wooyun I I I
I \‘ Inject | | I
| \ vulnerability) | .
I AS: AS: :Ubuntu Server 14.04 + Burpsuite]
: VM1 yM2 I :
I Simulation SUT | : Testing Agent |
- " __ J

Fig. 2. SQLi vulnerability detection based on the combinatorial mutation testing

352 J. Zhao et al.

diverse and specific, so the mutation operator may not always be effective. For
example, the SQL statement would not be changed if a mutation operator just
converts the single quotes to the double quotes. So before adding the mutated
SQL statement into the test set TS, checking for repeatability is needed. After
using a series of mutation methods, the expanded original test cases T'S can be
obtained from the input value set I, which could cover more vulnerabilities.

3.3 Combinatorial Mutation Method

As the number of mutation operators increases, the space explosion problem will
be highlighted. The CT could reduce the number of test cases while ensuring
coverage. Therefore, we propose a new CT-based mutation method to detect
vulnerabilities, which is Combinatorial Mutation Method. It contains two main
steps: (1) Produce test case generation scheme; (2) Output test set with the
given scheme.

CT-Based Test Case Generation Scheme. Since the target system may
have multiple filtering rules for the input, only one mutation method is not
enough for attackers or penetration testers. Firstly, we parameterize the muta-
tion methods to output the test case generation scheme.

Table 1 shows the input model of CT including the Six parameters and their
corresponding values. For example, the parameter “Stringtamper” has nine val-
ues, of which “1: “between”” means that the index “1” represents the mutation
operator “between”, and “1” has no numerical meaning. Particularly, “O:not be
capable” is a placeholder for a null operation. If a test case has a value of “0”, it
means skipping this mutation operator and performing subsequent operations.

For instance, the test case generation scheme is {2, 3, 0, 0, 0, 0}, and the
test case after the mutation method is “1 or 1 = 1% 00”. In addition, since the
parameters “Stringtamper” “Space2” and “Encoding” contain more mutation
operators, the values are not all listed, and the omitted part can be seen in
Subsect. 3.2, and the omitted part is represented by “...”.

ACTS is a test generation tool for constructing t-way (t = 1, 2, ..., 6) combi-
natorial test sets. The model of CT can be passed to ACTS to output the specific
test case generation schemes. Several test generation algorithms are implemented
in ACTS. These algorithms include IPOG, IPOG-D, IPOG-F and TPOG-F2. We
use the IPOG algorithm to generate the covering array.

Since the strength of combination differs according to the target system, a
tester cannot know the proper strength for the mutation. Thus, we generate
different strength covering array from two to five. Furthermore, we also use the
VSCT to generate test set, but this method need an interaction relationship of
parameters in its subset. So we get subset according to the effective payload in
the test results of t-way (Please see the experimental section for specific steps).
With instruction of the specific scheme, test cases can be generated by different
strength coverage.

CMM: A Combination-Based Mutation Method for SQL Injection 353

Algorithm 2. IPOG-based t-way CMM

Input: The parameter f1, fa,...fn of the system S
Input: k: The strength of t-way CT
Input: The corresponding value set P (Py, Pa, ..., P,) of parameter fi, f2,...fn
Output: T'S’: Test cases space.
I:T7={}
2: TS:{(’Ul, V2, eeny vk)\vlePl, v2E€Ps, ..., UkEPk};
3: if n==k then return end if
4: for P;(i=k+1,...,n) do
5: let @ be the set of k-way combinations of values involving parameter P; and k — 1 parameters
among the first ¢ — 1 parameters
for each test (o=v1,v2,...,v;—1) in T'S do
choose a value v; of P; and replace o with o’= v1,va, ..., v;_1, v; so that o’ covers the most
number of k-way of values in P;
remove from P; the combinations of values covered by o

6
7
8:
9: end for
10
11

while T'S does not cover the value pairs formed by P; and Py, Ps, ..., Pi_1 do
Add a new test for the parameters Py, P, ..., P; to the T'S, remove from 7 the k-way of
values covered by T'S
12: end while

13: end for

14: for each input in T'S do

15: while not max_tries do

16: t = apply-MO(input)

17: if t not in T then Add t into T'S” end if
18: end while

19: end for

20: return TS’

CMM-Based Test Set Generation. A set of test case generation schemes is
parsed into test set with specific mutations. Algorithm 2 lists the IPOG-based t-
way CMM process: the test case generation algorithm needs to pass the model’s
parameter CM and the coverage strength & to the test case set generation module
according to the CT model. Then the IPOG algorithm (line 2-16) [16] is used
to generate TS set. Next, for each legal input, the test case mutation algorithm
apply_MO is executed according to the index of the cover set TS. Similarly,
VSCT also generates CMM test cases based on the IPOG algorithm, as shown
in Algorithm 3. The difference between those two algorithms is that VSCT is
based on the 2-way CT (line 2-16) test set TS, and the subset C has the t-way
(t > 2) interaction (line 17-21) relationship sample S’. Then we remove the
combinations of values covered by S’ from T'S, and the rest combinations are
merged with S’ to generate a new test set S.

After the process, we pass the test cases set to the Web Security Auditing
and Scanning tool Burpsuite?, then the intruder mode in Burpsuite is applied
to inject SQL vulnerabilities into Simulation SUT to get the request statement.
The SQLi vulnerability detection process based on the combinatorial mutation
testing is shown in Fig. 2.

2 https://portswigger.net/burp.

354 J. Zhao et al.

Algorithm 3. IPOG-based variable strength CMM

Input: The parameter f1, fa,...fn of the system S

Input: k: The variable strength of subset C C {C1,C2,Cpr_1}

Input: The corresponding value set P (Py, Pa, ..., P,) of parameter f1, f2,...fn
Output: T'S’: Test cases space.

1:7={}

2: TS={(v1,v2)|v1E€P1,v2EP};

3: if n==2 then return end if

4: for P;(i=3,4,...,n) do

5: let © be the set of i-way combinations of values involving parameter P; and i — 1 parameters
among the first ¢ — 1 parameters

6 for each test (o=v1,v2,...,v;—1) in T'S do

7 choose a value v; of P; and replace o with o’= v1,va, ..., v;_1, v; so that o’ covers the most

number of k-way of values in 7

8: remove from 7 the combinations of values covered by o’

9: end for

10 while T'S does not cover the value pairs formed by P; and Py, Ps, ..., Pi_1 do

11 Add a new test for the parameters Py, Pa, ..., P; to the T'S, remove from 7 the k-way of

values covered by T'S
12: end while
13: end for
14: while C;(i=1,2,...,n-1) do
15: S’ = IPOG(k,C;)
16: remove from T'S the combinations of values covered by S’
17: S=TSuUS’
18: end while
19: for each input in S do

20: while not max_tries do

21: t= apply-MO (input)

22: if t not in T then Add t into T'S’ end if
23: end while

24: end for

25: return TS’

4 Experiment and Results

4.1 Experiment Framework

In the experiment, Web server is deployed on a virtual machine, the operating
system is Ubuntu14.04, as shown in the Fig. 3. We set three open source vulner-
able Web applications on the server as the target system: Web For Pentester?,
DVWA*, DVWA-Woo Yun®. Testing tool is set on the host, the OS is Windows7.

We visit the vulnerable pages on the server and then hijack the Web request
by Burpsuite which is an integrated platform for performing security testing of
Web applications. The mutated input is loaded in intruder mode of Burpsuite,
some important parameters in the request which are input of users are injected
with our mutated input.

When a malicious input is successfully injected, these vulnerable Web appli-
cations will reply with a response page containing a list of users and passwords.
Then we judge whether the injection point can be injected based on response
pages. Here we choose these vulnerable Web applications because they have a
high coverage of SQLi types, at the same time, there are different filter functions.

3 https://www.pentesterlab.com/.
* http://www.dvwa.co.uk/.
5 http://sourceforge.net/projects/dvwa-wooyun/.

CMM: A Combination-Based Mutation Method for SQL Injection 355

N =
S —
o o
S <
/ \
Tegting Server Server Under Tegt
/ . \
/ :" N
/ NG ~
/ 3 ~ N
/ itor 1
p Mponitor .) N
/ / N
/ / Testing Engineer \A
7/ ———————= T — 31
¢ d |
Combina.torial Application | Database =~ |—® Database Logs |
mutation |
|

Windows7 OS

+ Ubuntu Server 14.04 0S I

b 1

' |

|

| Orginal input |— | Testing Agent :

: |
I

: Server under Testing |

—
|
|
| Under Testing
|
N
1
|
I

Fig. 3. Experiment framework

Pentester lab is one of the basics training for Web testing and summary of
the most common vulnerabilities. This platform show how to manually find and
exploit the vulnerabilities, which contains SQLi. Web For Pentester has 9 SQLi
pages with different filter functions, but the last two pages are about how to use
the vulnerability.

DVWA is a PHP /MySQL Web application that is damn vulnerable. Its main
goals are to provide a legal environment for security experts to test their technol-
ogy and tools, to help Web developers better understand the security issues of
Web applications. In SQLi part, it contains general injection and blind injection
with security level of low, medium and high. Low level has SQLi vulnerability,
medium level has filter functions which want to protect the system, while high
level is a standard safe programming paradigm.

DVWA-Woo Yun is a Wooyun OpenSource project based on DVWA project.
It is based on real bug reported on wooyun.org. Each vulnerable page has a “View
Source” button to show the php source code, which can help people understand
the vulnerability.

4.2 Metrics

In our experiments, we use the F-measure (represented by F' in tables), Effi-
ciency (represented by E in tables) to demonstrate the capabilities of different
approaches.

— F-measure Metric: F-measure calculates the expected number of payloads
required to detect the first SQLi vulnerability. In other words, a lower F-
measure value means fewer tests are used to accomplish the task. Therefore,
if a testing strategy yields a lower F-measure value, it is considered to be
more effective. Obviously the metric is affected by the order of the test cases,

356 J. Zhao et al.

but in our experiment the order is random, so it is not enough to evaluate
the CMM. As sqlmap would stop after the first effective test case were found,
if sqlmap cannot stop after.

— Efficiency Metric: The Efficiency is a very common test case evaluation stan-
dard that reflects the percentage of effective test cases. It can effectively eval-
uate the quality of the test case when detecting vulnerability. The formula is
expressed as follows: E f ficiency(%) = (X/N) x 100%, where X is the number
of test cases that can trigger vulnerabilities, and N is the size of test set. As
sqlmap would stop after the first effective test case were found, the Efficiency
of sqlmap is not calculated, and the corresponding results are represented by

“won

Table 2. Web for Pentester

Example 1 | Example 2 | Example 3 Example 4 Example 5 Example 6 | Example 7

F E F E F E F E F E F E F | E
1-way 0 | 0.00% |0 0.00% | 0 0.00% | 7 | 13.33% | 7 |26.67% | 0 |0.00% |9 |6.67%
2-way 14 | 5.19% | 26 | 3.70% | O 0.00% | 12 | 5.93% 8 20.74% | 19 | 3.70% | 15 | 1.48%
3-way 14 | 6.38% | 14 | 3.39% | 211 | 0.14% | 16 | 6.68% 8 | 18.73% | 26 | 3.53% | 26 | 3.26%
4-way 2 |6.46% | 10 3.44% | 63 0.14% 4 | 5.96% 4 |17.06% | 45 | 3.62% | 9 1.74%
5-way 11 | 5.13% | 92 2.65% | 2805 | 0.08% 7 | 4.62% 1 |15.60% 1 |3.37% | 30| 1.74%
VSCA; 20 | 8.14% | 45 | 4.65% | 71 0.33% | 15 | 8.14% 4 |25.25% |15 | 1.16% | 13 | 1.83%
VSCAy |13 | 7.45% |23 | 5.25% | 129 | 1.03% | 5 |8.46% 5 126.73% |12 | 0.85% |9 | 1.69%
sqlmap 40 | — 44* | — 58* — 40 | — 41 | — 80 | — - |-
FuzzDB | 25 | 6.64% | 42 0.47% | 42 0.47% | 17 | 1.42% 17 | 1.42% 17 | 1.42% | 0 0.00%

4.3 Results

As a comparison, we conduct a series of experiment with sglmap, FuzzDB® and
our method. Our method is a mutation method to generate aggressive test cases.

Table 3. DVWA

SQLi(low) | SQLi(blind)(low) | SQLi(medium) | SQLi(blind)(medium)

F | E F E F |E F E
1-way 0 [0.00% 0 |0.00% 7 1 13.33% 7 |1 13.33%
2-way 26 |4.44% | 26 |4.44% 12 | 5.93% 12 | 5.93%
3-way 14 |5.29% | 14 |5.29% 16 | 6.78% 16 | 6.78%
4-way 2 |5.78% 2 |5.78% 4 |5.96% 4 15.96%
5-way 11 [4.09% | 11 |4.09% 7 4.62% 7 4.62%
VSCA, |45 |5.65% | 45 |5.65% 49 |5.48% 49 |5.48%
VSCA; |46 |5.41% | 46 |5.41% 54 |5.25% 54 |5.25%
sqlmap 46 | — 104 | — 40 | — 102 | —
FuzzDB |25 |7.11% | 25 |7.11% 17 | 1.42% 17 | 1.42%

5 https://github.com/fuzzdb-project /fuzzdb.

CMM: A Combination-Based Mutation Method for SQL Injection 357

Table 4. DVWA wooyun-I

Sqli QUERY_STRING | Sqli filter #02-once | Sqli Mysql #01 | No [Comma)] Sqli
F E F E F E F | E
1-way 0 0.00% 0 0.00% 7 | 20.00% 0 | 0.00%
2-way 58 |2.22% 26 | 2.96% 15 | 18.52% 26 | 4.44%
3-way 8 2.71% 14 | 4.48% 8 |16.82% 14 | 6.38%
4-way 143 | 1.83% 2 4.22% 18 | 13.71% 2 | 7.29%
5-way 1 1.61% 11 2.87% 1 |12.56% 11 | 5.45%
VSCA, 6 2.82% 45 | 4.32% 4 119.44% 45 | 5.65%
VSCAs 8 3.05% 46 | 4.06% 8 |20.30% 68 | 5.41%
sqlmap — — 73| — 380 | — - | =
FuzzDB |0 0.00% 25 | 6.16% 17 | 1.90% 25 | 6.64%
Table 5. DVWA wooyun-I1
Sqli using[Slashes] | Sqli filter #02-80sec | Sqli filter#01 | No [Space] Sqli
F | FE F | E F | E F E
1-way 0 | 0.00% 14 | 6.67% 13]6.67% 0 | 0.00%
2-way 0 | 0.00% 15| 7.41% 58 | 1.48% 26 |3.70%
3-way 0 | 0.00% 16 | 6.78% 16 | 1.63% 14 | 4.48%
4-way 0 | 0.00% 27 16.37% 18| 1.83% 5 | 4.81%
5-way 0 | 0.00% 1 |5.71% 1 11.78% 11 | 3.39%
VSCA, 0 | 0.00% 13 | 3.99% 8 | 1.16% 45 | 5.65%
VSCAs 10 |0.00% 21 | 4.91% 45| 1.18% 45 | 4.40%
sqlmap — | = - | = - | = 2626 | —
FuzzDB |0 | 0.00% 17 | 1.90% 3310.47% 25 | 4.74%

The automated SQLi tool sglmap requires manual judgment and implementa-
tion, and may need to try many times. FuzzDB is an open source database of
attack patterns, predictable resource names, regex patterns for identifying inter-
esting server responses and documentation resources, which is hosted at Google
Code. We only choose the cross platform SQLi part of the dictionary.

In addition to using t-way (1 < ¢t < 6) combination approach, we also con-
sider combination method of variable strength to generate test sets to trigger
more vulnerabilities. We analyze the Efficiency of the 3-way, 4-way, 5-way test
set of the three benchmarks and the effective payload (effective test cases) in
the experimental results, and find three parameter sets: {input, stringtamper,
space2}, {comment, space2, apostle}, {input, comment, apostle}, in which the
interaction relationships can make the payload more efficient. To balance the
effectiveness and flexibility of the mutation-force combination method, the num-
ber of test cases should be set between the number of 2-way test cases and
the number of 3-way test cases. In order to achieve this goal, the six parame-
ters based on the 2-way CT generate test set. Then respectively add two subset
{{input, stringtamper, space2}, {input, comment, apostle}}, {{input, stringtam-
per, space2}, {comment, space2, apostle}}. these subsets have the 3-way (¢ > 2)

358 J. Zhao et al.

interaction relationship. Using 3-way CT, parameters in the subset generate test
cases S’. Then we remove the combinations of values covered by S’ from T'S, and
the rest combinations are merged with S’ to generate a new test set V.SCA;,
VSCA,, the gray part of these tables are VSCT.

To prove the validity of our method, we calculate the average time cost of
t-way. The number of test cases generated by different methods is different and
constant. 1-way takes less than 0.01s to generate 15 test cases. 2-way takes 0.45s
to generate 135 test cases. 3-way takes 14.8s to generate 737 test cases. 4-way
takes 417.8s to generate 2181 test cases. b-way takes 2158.4s to generate 5287
test cases. V.SC A takes 43.0s to generate 602 test cases. V.SCA,y takes 42.0s
to generate 591 test cases. The evaluation of effectiveness in Tables2, 3, 4 and
5, where the total number of test cases for each way is derived from test cases
sets given above.

We perform an average of 10 experiments on t-way as the test results to
prevent the randomness of the conclusion and to verify the method more accu-
rately. As can be seen in Table 2, in most cases there are better F-measure and
Efficiency for 2-way and above than the other two methods, especially Example
4, Example 5 and Example 7. In addition, sglmap can exploit this vulnerability
only if it implements manual judgment and specifies mutation methods in Exam-
ple 2 and Example 3 (marked with * in the table). Composite-based test case
generation methods perform better than other methods in testing these pages.
In Example 7, the other two methods are invalid, but t-way works well and has
a superiority in the discovery of potential vulnerabilities under multiple filtering
rules.

As shown in Table3, t-way and VSCT can ignore the type of injec-
tion, whether it is normal or blind. Although there are some fluctuations, t-
way still has advantages over sqlmap and FuzzDB on the whole, especially
in SQLi(medium) and SQLi(blind)(medium) with better Efficiency. Although
VSCT’s F-measure and Efficiency decrease slightly with difficulty, their Effi-
ciency is still higher than FuzzDB. It shows that t-way is good at exploring
vulnerabilities when there are interaction between the various factors.

In Tables4 and 5, with different filtering rules from real bug reports, t-way
also works better than the other two methods. But the page Sqli using/Slashes]
may have some problems in the application.

Seen as a whole, Example 2, 4, 5, 6, 7 in Table2, t-way t-way and VSCT
have a better efficiency than FuzzDB, especially in Example 5. VSCT is better
than t-way and FuzzDB in terms of F-measure and Efficiency in Example 1
and 2. For Table 3, 4 and 5 considering F-measure, the number of payload and
Efficiency, CMM are irreplaceable by sqlmap and FuzzDB.

Above all, combined with Tables2, 3, 4 and 5, if we have requirements for
both evaluation criteria F-measure and Efficiency, the high-way (4 < ¢ < 5)
covering array is undoubtedly a good choice. But for all Benchmarks, VSCT is
more efficient than any t-way. That is, if we want to improve the quality of test
cases and enhance the reliability of Web applications, we need to find the subset

CMM: A Combination-Based Mutation Method for SQL Injection 359

Table 6. Comparison with ART4SQLi

Web for Pentester DVWA wooyun sql DVWA wooyun sql

SQLi Example 1 query string filter 01

F | E F E F E
1 way 0]0.00% 0]0.00% 96.67%
2 way 12| 2.22% 41 | 2.22% 41| 1.48%
3 way 23 | 6.38% 13 2.71% 93| 1.63%
4 way 8 16.52% 62| 1.82% 52 1.79%
5 way 15| 5.12% 30| 1.59% 46 | 1.83%
VSCA; 13 | 8.14% 6 |2.82% 13| 1.16%
VSCAs 15 | 7.29% 14 | 3.05% 87| 1.18%
ART4SQLi | 49 | 1.58% 1359 | 0.04% 1183 | 0.06%

relationship between the parameters based on the t-way’s effective test cases or
professional test experience to further generate the variable strength test set.

In order to compare with our previous work, ART4SQLi, we conduct exper-
iments under the same conditions in the ART4SQLi experiment and showed
them in Table 6. In addition, ART4SQLi generated 76105 test cases. As can be
seen in Table 6, although 1-way cannot successfully inject in Web for Pentester
SQLi Example 1 and DVWA wooyun sql query string, it still performs good in
DVWA wooyun sql filter 01 with only 15 test cases. In other pages and t-ways
and VSCTs perform much better than ART4SQLi. ART/SQLi’s strategy of
selecting the farthest test case from the selected onetest is talented. But the test
cases set of ART4SQLi is too large (76105 test cases) and it lacks of function to
filter out invalid mutants, which leads to bad F-measure and Efficiency.

5 Conclusion

SQL injections have been ranked as one of the most dangerous Web application
vulnerabilities. Researchers have proposed a wide range of techniques to address
the problem of detecting SQL injections. In this paper, we introduce a new
technique CMM to detect vulnerabilities for SQLi. CMM first establish a CT
modeling base on mutation operators of sqlmap. After that, test case generation
schemes can be generated by specific methods, such as t-way CT and VSCT.
Then the schemes are converted into mutation sets. Finally, we use the Web
Security Auditing and Scanning tool to inject SQL vulnerabilities into Simulation
SUT.

The experiments adopt three open source SQLi benchmarks, and the results
show that high-way (4 < ¢t < 5) covering arrays are undoubtedly better than
the others, considering the F-measure and Efficiency. But only for Efficiency,
variable strength is also a good choice, if we know the constraint relationship
between parameters in advance. The CMM approach is effective in finding SQLi
vulnerabilities with multiple filtering rules. In the future, we also expect to apply
CMM to other Web application vulnerabilities, such as XSS.

360 J. Zhao et al.

Acknowledgement. We would like to thank anonymous reviewers for their invaluable
comments and suggestions on improving this work. This work is supported by National
Natural Science Foundation of China (NSFC) (grant No. 61572150), and the Funda-
mental Research Funds for the Central Universities of DUT (No. DUT17RC(3)097).

References

1. Appelt, D., Nguyen, C.D., Briand, L.C., Alshahwan, N.: Automated testing for
SQL injection vulnerabilities: an input mutation approach. In: Proceedings of the
2014 International Symposium on Software Testing and Analysis, pp. 259-269.
ACM (2014)

2. Bisht, P., Madhusudan, P., Venkatakrishnan, V.: Candid: dynamic candidate eval-
uations for automatic prevention of SQL injection attacks. ACM Trans. Inf. Syst.
Secur. (TISSEC) 13(2), 14 (2010)

3. Nie, C., Leung, H.: A survey of combinatorial testing. ACM Comput. Surv. 43(2),
1-29 (2011)

4. Chen, J., et al.: An adaptive sequence approach for OOS test case prioritization.
In: IEEE International Symposium on Software Reliability Engineering Workshops
(2016)

5. Cohen, M.B., Gibbons, P.B., Mugridge, W.B., Colbourn, C.J.: Constructing test
suites for interaction testing. In: Proceedings of the 25th International Conference
on Software Engineering, pp. 38-48. IEEE Computer Society (2003)

6. Deepa, G., Thilagam, P.S.: Securing web applications from injection and logic
vulnerabilities: approaches and challenges. Inf. Softw. Technol. 74, 160-180 (2016)

7. Deshpande, V.M., Nair, D.M.K., Shah, D.: Major web application threats for data
privacy & security-detection, analysis and mitigation strategies. Int. J. Sci. Res.
Sci. Technol. 3(7), 182-198 (2017)

8. Fossi, M., et al.: Symantec global internet security threat report. White Paper,
Symantec Enterprise Security 1 (2009)

9. Gu, H., et al.: DIAVA: a traffic-based framework for detection of SQL injection
attacks and vulnerability analysis of leaked data. IEEE Trans. Reliab. (2019)

10. Hagar, J.D., Wissink, T.L., Kuhn, D.R., Kacker, R.N.: Introducing combinatorial
testing in a large organization. Computer 48(4), 64-72 (2015)

11. Holler, C., Herzig, K., Zeller, A.: Fuzzing with code fragments. In: Presented as
Part of the 21st USENIX Security Symposium (USENIX Security 2012), pp. 445—
458 (2012)

12. Huang, Y., et al.: A mutation approach of detecting SQL injection vulnerabilities.
In: Sun, X., Chao, H.-C., You, X., Bertino, E. (eds.) ICCCS 2017. LNCS, vol.
10603, pp. 175-188. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68542-7_15

13. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Trans. Softw. Eng. 37(5), 649-678 (2011)

14. Kuhn, D.R., Kacker, R.N., Lei, Y.: Introduction to Combinatorial Testing. CRC
Press, Boca Raton (2013)

15. Lee, I., Jeong, S., Yeo, S., Moon, J.: A novel method for SQL injection attack
detection based on removing SQL query attribute values. Math. Comput. Model.
55(1), 58-68 (2012)

16. Lei, Y., Kacker, R., Kuhn, D.R., Okun, V., Lawrence, J.: IPOG: a general strategy
for t-way software testing. In: IEEE International Conference & Workshops on the
Engineering of Computer-based Systems, ECBS 2007 (2010)

17.

18.

19.

20.

21.

22.

23.

24.

25.

CMM: A Combination-Based Mutation Method for SQL Injection 361

Nie, C., Leung, H.: A survey of combinatorial testing. ACM Comput. Surv. (CSUR)
43(2), 11 (2011)

Nie, C., Wu, H., Niu, X., Kuo, F.C., Leung, H., Colbourn, C.J.: Combinatorial
testing, random testing, and adaptive random testing for detecting interaction
triggered failures. Inf. Softw. Technol. 62, 198-213 (2015)

Qi, X., He, J., Wang, P., Zhou, H.: Variable strength combinatorial testing of
concurrent programs. Front. Comput. Sci. 10(4), 631-643 (2016)

Sabharwal, S., Aggarwal, M.: Variable strength interaction test set generation using
multi objective genetic algorithms. In: 2015 International Conference on Advances
in Computing, Communications and Informatics (ICACCI), pp. 2049-2053. IEEE
(2015)

Sadeghian, A., Zamani, M., Manaf, A.A.: A taxonomy of SQL injection detection
and prevention techniques. In: 2013 International Conference on Informatics and
Creative Multimedia (ICICM), pp. 53-56. IEEE (2013)

Shahriar, H., Zulkernine, M.: Music: Mutation-based SQL injection vulnerability
checking. In: The Eighth International Conference on Quality Software 2008, QSIC
2008, pp. 77-86. IEEE (2008)

Simos, D.E., Zivanovic, J., Leithner, M.: Automated combinatorial testing for
detecting SQL vulnerabilities in web applications. In: Proceedings of the 14th
International Workshop on Automation of Software Test, pp. 55-61. IEEE Press
(2019)

Yu, L., Yu, L., Kacker, R.N., Kuhn, D.R.: ACTS: a combinatorial test generation
tool. In: IEEE Sixth International Conference on Software Testing (2013)

Zhang, L., Zhang, D., Wang, C., Zhao, J., Zhang, Z.: ART4SQLi: the ART of SQL
injection vulnerability discovery. IEEE Trans. Reliab. 68, 1470-1489 (2019)

