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Abstract—Sybil attack is one of the most dangerous internal
attacks in Vehicular Ad Hoc Network (VANET). It affects the
function of the VANET network by maliciously claiming or
stealing multiple identity propagation error messages. In order
to prevent VANET from Sybil attacks, many solutions have
been proposed. However, the existing solutions are specific to
the physical or application layer’s single-level data and lack
research on cross-layer information fusion detection. Moreover,
these schemes involve a large number of sensitive data access
and transmission, do not consider users’ privacy, and can also
bring a severe communication burden, which will make these
schemes unable to be actually implemented. In this context,
this paper introduces FedMix, the first federated Sybil attack
detection system that considers cross-layer information fusion
and provides privacy protection. The system can integrate
VANET physical layer data and application layer data for joint
analyses simultaneously. The data resides locally in the vehicle
for local training. Then, the central agency only aggregates the
generated model and finally distributes it to the vehicles for
attack detection. This process does not involve transmitting and
accessing any vehicle’s original data. Meanwhile, we also designed
a new model aggregation algorithm called SFedAvg to solve the
problems of unbalanced vehicle data quality and low aggrega-
tion efficiency. Experiments show that FedMix can provide an
intelligent model with equivalent performance under the premise
of privacy protection and significantly reduce communication
overhead, compared with the traditional centralized training
attack detection model. In addition, the SFedAvg algorithm and
cross-layer information fusion bring better aggregation efficiency
and detection performance, respectively.

Index Terms—Information fusion, Federated learning, Sybil
attack detection, Privacy protection, ANN

I. INTRODUCTION

VANET is a mobile ad hoc network that supports vehicle-to-
vehicle communication and vehicle-to-infrastructure commu-
nication. It can provide timely and effective safety messages
and traffic information for drivers or related agencies. So that
they can know the traffic accidents and adverse environment
around them in advance and then make timely decisions to

ensure their own safety. Many applications are deployed in
VANET to provide intelligent services such as road safety,
congestion warning, and audio-visual entertainment. Most of
these services involve cooperation between multiple vehicles.
Suppose the identity of the vehicle involved in the cooperation
is false, or it is interfered with by the attacker to send wrong
messages. In that case, these applications will make wrong
responses and affect the driver’s decision-making. Therefore,
the correctness and completeness of the data in VANET are
essential. Once there is an error in the information in VANET,
it will lead to immeasurable harm.

The highly mobile distributed nodes, frequently changing
topology environment, and self-management characteristics of
VANET make it face more threats and vulnerabilities than
traditional wired networks. The existing traditional security
mechanisms, such as asymmetric encryption based on public-
key infrastructure (PKI) [1], can only eliminate external at-
tacks that do not have key material. However, because the
attacker may be an insider of the network (i.e. have valid
key materials), this method cannot be detected. The Sybil
attack is such an attack launched by insiders. Attackers create
multiple virtual identities through forgery or theft and use them
to release malicious messages to affect traffic and seek their
own benefits. This is highly fatal to VANET. If information
related to road safety is interfered, it may lead to serious
traffic accidents. Even if the current self-driving vehicles
are equipped with sensors such as lidar and cameras, some
fake vehicles can be identified. However, the above sensor
only works under the condition of the line of sight. In the
case of non-line-of-sight (NLOS) and obscured line of sight
(OLOS) [2], the above sensors will fail and can only rely
on messages or perceived radio signal strength broadcast
through DSRC or C-V2X communication technology. Sybil
attackers take advantage of this point, using virtual identities to
fabricate several actively involved vehicles to send basic safety
messages (BSM), falsely reporting their movement, which will
directly lead to road safety problems.



Therefore, deploying a Sybil attack detection system in ve-
hicles and infrastructure is essential. At present, the detection
of Sybil attack is mainly realized by developing the detection
mechanism of abnormal behaviour and performing the analysis
of VANET physical-layer data (e.g. received signal strength)
or application-layer data (e.g. BSM). These detection schemes
are carried out for the single-level information of VANET,
and there is a lack of research on the fusion of the two-level
information. At the same time, this information contains many
private data, such as the vehicle’s location and speed. However,
the existing detection schemes need to access these private data
directly and require vehicles to share them with third-party
organizations (e.g. Road Side Unit (RSU), Central Agency
(CA)) for centralized analysis, which will lead to privacy
leakage. The behaviour of sharing these vehicles’ private data
is like sharing personal information with potential attackers
somehow. Attackers can also use machine learning technol-
ogy to analyze these data to draw some behavior patterns
and conclusions about car owners. Although encryption can
alleviate this problem to a certain extent, tens of thousands of
vehicles in VANET keep broadcasting BSM messages, which
will produce a large amount of data in a short time. Whether
these data are transmitted encrypted or not will take up a
large amount of network bandwidth, affect the performance
of VANET, and will be accompanied by extensive time and
economic costs.These limitations and the increasingly perfect
laws and regulations on privacy protection make it impossible
to implement the existing Sybil attack detection schemes.

Our goal is to design a Sybil attack detection scheme that
considers cross-layer information fusion and provides privacy
protection. It prevents local vehicle data from being directly
accessed by third organizations. Moreover, each vehicle can
participate in the training of the attack detection model without
transmitting local data. Each vehicle then gets a federated
Sybil attack detection model trained cooperatively to perform
a joint analysis of the physical and application layer data.
Compared with the traditional centralized training Sybil attack
detection model, this federated detection model will not reduce
the detection performance but also significantly reduce the
communication overhead in the training process. Our contri-
butions are summarized as follows.

• A federated Sybil attack detection model with privacy
protection: We introduce FedMix: the first Sybil attack
detection system that provides privacy protection. Fed-
Mix uses the machine-learning algorithm and federation
training to generate a federated Sybil attack detection
model for attack detection. It provides privacy protection
by avoiding mass transmission of private information
and direct access by third organizations. We test the
federated detection model on several scenarios of the
F2MD simulator. The test results show that it can achieve
the detection performance equivalent to the centralized
training model. At the same time, we calculate the
communication overhead of the two models, and the
training of the federated machine-learning model has

less communication overhead than the traditional machine
learning model.

• Cross-layer information fusion detection: We have car-
ried out the research on cross-layer information fusion
detection. FedMix will analyze VANET physical-layer
data and application-layer data simultaneously. Multi-
level data can provide more helpful information for Sybil
attack detection. We compare the difference in detection
performance between information fusion and non-fusion.
The experimental results show that information fusion
can achieve better detection performance. In addition,
to facilitate the implementation of physical-layer data
analysis, we expand the VeReMi [3] data set output by
the F2MD simulator, adding the location field and signal
strength field when the vehicle receives the message.

• An improved federated aggregation algorithm: We design
a new aggregation algorithm called SFedAvg to alleviate
the problem of slow convergence speed and low aggrega-
tion efficiency caused by the uneven data quality of each
vehicle in VANET. Compared with the standard FedAvg
aggregation algorithm in federated learning, SFedAvg
can improve the aggregation efficiency without reducing
the model’s performance, so that the number of com-
munication rounds required to achieve the same model
performance is less, and the communication overhead is
further reduced.

II. BACKGROUND

A. Federated Learning

Federated learning (FL) has emerged and been promoted
to solve the problem that standard deep learning solutions
are challenging to implement in privacy scenarios. Federated
learning is composed of local devices and global servers.
The global server connects many local devices through the
network to train the deep neural network model together.
Unlike the centralized data collection scheme in standard deep
learning, the data in federated training is widely distributed
on different local devices. At the same time, the global server
only specifies the initial training model and related aggregation
algorithm, and does not collect any training data. Moreover,
only the model-related parameters are transmitted during their
communication. The transmission of raw data and its critical
statistical information is prohibited.

At present, the standard aggregation algorithm in federated
learning is FedAvg [4]. The design of this algorithm assumes
that the data is uniformly distributed in each local device.
The parameters of each local model are averaged with a fixed
aggregation weight, which is set to be proportional to the
size of the client data set, and finally a global aggregation
model is obtained. In addition, FedAvg requires that stochastic
gradient descent (SGD) must be used as the optimization
algorithm. Obviously, such a setting is difficult to achieve
optimal in all scenarios. In this work, we focus on Sybil attack
detection in VANET. In this scenario, vehicles act as local
devices, and the traffic environment in which these vehicles
are located is always changing and different. Therefore, it is



almost impossible for the local data set collected by each
vehicle to be uniformly distributed.

B. Sybil Attack

The Sybil attack was first introduced by Douceur in [5]. The
vehicles communicate via DSRC technology (also known as
ITS-G5 technology) or V2X Mode 4. Basic Safety Message
(BSM) is broadcast periodically by all vehicles. Each message
contains the vehicle’s pseudonym (temporary identity) and
several kinematic information (e.g. position, velocity, orien-
tation, etc.). A public key infrastructure (PKI) can be used
to manage cryptographic certificates, providing a vehicle with
one long-term certificate and several short-term certificates,
called pseudonym certificates. These certificates are used to
sign BSM messages. Vehicles change pseudonyms frequently
to avoid tracking and protect privacy. In order to ensure the
vehicle’s ability to send BSM messages continuously, several
valid pseudonyms must be provided at the same time, and
the European Commission recommends the use of up to 100
valid pseudonym certificates [6]. However, PKI is an effec-
tive countermeasure against external attackers (i.e. attackers
without valid encryption certificates). An internal entity with
a valid encryption certificate can still launch an attack. We
cannot assume that all internal entities are trustworthy. And
researchers have shown that internal security threats are real
in VANET, which has been proven through field operational
testing (FOT) [7]. Such attacks initiated by internal entities
are often referred to as insider attacks. Sybil attacks are
one of them. A Sybil attack occurs when a vehicle with a
valid cryptographic certificate intentionally uses multiple valid
pseudonyms simultaneously (regular vehicles cannot use more
than one pseudonym certificate to sign BSM messages within
a certain period of time).

F2MD [2] is the latest framework for full-element re-
search on simulation and security analysis of insider attacks
in VANET. The framework is dedicated to the analysis of
application-layer BSM messages. It is designed to be easily
extended to develop new attack and anomaly detection algo-
rithms. There are four forms of Sybil attacks implemented in
this framework, which are described in detail in [6]. Here, we
briefly recapitulate:

1) Traffic Congestion Sybil: Attackers use multiple valid
pseudonyms to simulate multiple ghost vehicles intelli-
gently, make them reasonably distributed on the road,
and publish false messages with credible content, creat-
ing the illusion of traffic congestion.

2) Data Replay Sybil: The attacker selects a victim’s ve-
hicle, and whenever it receives a message from it, it
immediately creates a message with the same essential
content for replay. Meanwhile, it changes the pseudonym
for each replay. Making the victim’s vehicle more likely
to be mistaken for the attacker by the detection system.

3) Dos Random Sybil: The attacker increases the beacon
frequency of the vehicle, uses different pseudonyms, and
sends a large number of messages filled with random
data (e.g. random locations). As a result, the detection

system is in a busy state for a period of time and can
not process the latest information in time.

4) Dos Disruptive Sybil: This attack is a combination of
2) and 3). The attacker still uses a different pseudonym
in each message, but instead of randomly filling in the
message content, it is based on real messages received
from nearby vehicles. At the same time, different from
2), it is not only for a single vehicle but for multiple
nearby vehicles, making the messages exchanged by all
surrounding vehicles become unreliable in a short time.

III. RELATED WORK

Sybil attack detection has been explored by extensive re-
search. They can be roughly divided into detection research on
physical-layer data and detection research on application-layer
data. Specifically, in the research on detecting application-
layer data, Hao et al. [8] proposed a security protocol to detect
Sybil nodes cooperatively by checking the rationality between
the vehicle’s location and the location of its neighbors. When
a vehicle detects a potential Sybil node in a neighbor, it
broadcasts to other neighbors to confirm whether an attack
is occurring. When it is confirmed that the number of vehicles
attacking at this time is greater than the threshold, the vehicle
will refuse to receive messages sent by the identified attacking
vehicle for a period of time. However, it relies on the strong
assumption of the honest majority principle. When the number
of attackers in the neighborhood of the vehicle is larger,
the cooperative detection will fail. However, the detection
method based on machine learning technology does not rely
on the strong assumption of the honest majority principle and
can automatically extract some potential detection rules. It
is therefore heavily studied in the literature. Gu et al. [9],
[10] proposed the detection method of Sybil attack based on
the k-nearest neighbor and support vector machine (SVM)
algorithm, respectively. Subsequently, Quevedo C et al. [11]
proposed using the extreme learning machine (ELM) for Sybil
attack detection to achieve lower computational complexity.
They all classify vehicles based on the similarity of vehicle
driving patterns and then identify Sybil nodes. In addition,
Eziama et al. [12] used a Bayesian network combined with
probabilistic modeling to establish a trust model to identify
honest and malicious nodes. In the above methods based on
machine learning, to obtain a model with higher detection
performance, a large size of data is often needed for model
training. However, in VANET, due to the consideration of
communication cost and the limitation of privacy protection,
it is not feasible to collect a large size of data centrally.

In the research on detecting physical-layer data, Lv et al.
[13] proposed a Sybil attack detection scheme based on RSSI
of received signal strength and node cooperation. This method
does not calculate the exact position but calculates the distance
between different nodes. The identities with similar signal
strength are combined and then broadcast to other nodes. Each
node comprehensively determines the Sybil node according to
the multiple identity sequences received. This method uses
mutual trust between nodes as the premise of cooperation,



while Sybil nodes can not be trusted. In addition, Zhang et
al. [14] proposed an intrusion detection mechanism based on
LSTM. The method uses the LSTM algorithm to self-learn the
difference between actual and estimated RSSI sequences and
establishes a trust list to identify malicious nodes. Yao et al.
[15] also proposed a Sybil attack detection method based on
RSSI sequence. The method takes the RSSI sequence as the
vehicle identifier and compares the similarity between all the
received sequences. It does not rely on the radio propagation
model and neighbor cooperation, but an attacker can evade
detection by controlling the signal transmitter. Therefore, the
detection method that only depends on the single-level data of
the physical layer is unreliable.

IV. SYSTEM DESIGN

The Sybil attack detection system FedMix designed by
us consists of two parts: the FedMix client installed in the
vehicle and the FedMix server installed in the central agency.
The specific design is shown in Fig. 1. The system uses the
proposed cross-layer information fusion detection method for
attack detection. Based on the ANN classification algorithm,
this method distinguishes malicious nodes from benign nodes
by driving patterns (from application-layer data) between
vehicles and the difference between actual and estimated RSSI
sequences (from physical-layer data) during the driving pro-
cess. At the same time, the system adopts the way of federated
training. FedMix client will perform data preprocessing and
feature extraction steps to generate the difference between
RSSI sequences and the characteristics of driving patterns
and carry out local model training. Then, the FedMix server
will constantly aggregate local models and distributes the
latest federated aggregation model. When new messages are
received, the client will generate the features of the message
sequence and then use the federation detection model to
identify them to determine whether they are sent by malicious
nodes. The system is described in detail below.

Fig. 1. FedMix Sybil attack detection system.

A. Data Preprocessing

The FedMix system will preprocess the application and
physical layer data, respectively. First, the basic plausibility
and consistency checks (provided by F2MD) are performed
for the application-layer data. Moreover, for physical-layer

data, we calculate the distance Dist between the receiving and
sending vehicles according to their positions and estimate the
received signal strength corresponding to the current distance
by using the wireless signal attenuation model in [14]. And
then calculate the difference rDiff between it and the actual
physically measured receive signal strength of the vehicle. The
higher the rDiff value, the more likely it is that the message
is sent by a malicious node. Of course, this may also be due to
accidental errors because the empirical infinite fading model is
not always suitable for signal estimation in all cases, especially
when the vehicle is traveling at a high speed or the distance
between vehicles is long. Therefore, it is necessary to combine
more dimensions of information for further judgment.

B. Feature Extraction

Each message is cached after preprocessing and accumu-
lated for some time. When the set time window is reached, the
time series data in the window will be extracted. The extracted
features represent the characteristics of different dimensions
of the data stream during this period. The types of features
extracted from the application-layer data and the physical-layer
data are shown in Table I below.

TABLE I: Feature Types

Feature Type Detail
agg autocorrelation This feature computes descriptive statistics of time series autocorrelation [16]

benford correlation
This feature calculates the correlation between the first-digit distribution of
time series and the distribution of Newcomb-Benford’s Law [16].

variation coefficient
This feature calculates the coefficient of variation of the time series, that is,
the relative value of the variation around the mean. [16]

maximum This feature calculates the maximum value in the time series

minimum This feature calculates the minimum value in the time series

In addition, we customize a feature extraction rule called
checkScore for the results of plausibility and consistency
checking. The specific design is as follows. We think that
for a time series, the current time’s basic plausibility and
consistency check results are more important than those of the
historical time. Therefore, to get the comprehensive score of
each basic plausibility and consistency check at each moment,
we balance the historical average score and the current score
by setting weights. The specific calculation formula is as
follows. Assuming that the length of the time series data is n,
m represents the number of basic plausibility and consistency
checks, and Cij represents the j-th check of the i-th data, then
the checkScore is calculated as:

checkScore =

∑m
j=1 check j

m
(1)

where the comprehensive score for the j-th basic plausibility
and consistency check can be calculated according to the
following formula:

checkj =

n∑
i=2

(
Cij × 0.6 +

(
i−1∑
k=1

Ckj

)
/(i− 1)× 0.4

)
(2)



C. Federated Training

Support Vector Machine (SVM), K-Nearest Neighbor
(KNN), Random Forest, and LSTM machine learning models
have been tried to use in Sybil attack detection. However, most
of them are not suitable for federated training, such as Support
Vector Machine. It needs to traverse all the data to get the sup-
port vector, which contradicts the fact that federated training
does not collect raw data. In the FedMix system proposed
in this paper, we choose the artificial neural network (ANN)
as the basic model, which can be used to perform federation
training. This model will classify the received information flow
according to the extracted time series message features.

We describe the process of the FedMix system performing
federated training in VANET as follows. First, the central
agency initializes a blank global model model(0) using the
FedMix server. Then perform multiple rounds of aggregation
to obtain more intelligent models continuously. Fig. 2 shows
the specific process of each round of aggregation, taking the
i-th round of aggregation as an example. This process includes
the following steps:

Fig. 2. Round i of federated training in VANET.

1) The FedMix server in the central agency sends the model
model(i−1) to each vehicle entity (client) through the
network.

2) Each vehicle entity trains the model by using its own
local data, updates the weight of the model, and sends
the updated model to the FedMix server.

3) The FedMix server executes the aggregation algorithm
to aggregate all local models into a new model model(i).

4) The FedMix server updates the stored global model.

D. Model Aggregation Algorithm

The model aggregation algorithm belongs to the federated
optimization problem. In the standard FedAvg algorithm, at
each round of model aggregation update, the aggregation
weight of the current participant in the aggregation is given by
calculating the proportion of the size of the participant’s train-
ing dataset to the sum of the sizes of all participant’s training
datasets. Then, the models of each participant are aggregated
according to the weights to obtain a single global model w.
Moreover, the local client adopts a stochastic gradient descent
(SGD) algorithm to update the obtained global model w in

multiple rounds. The updated model parameters and training
dataset size are then uploaded. The update of the model
parameters comes from the SGD gradient ∇Fk(w) generated
after several rounds of training with the client’s private data.
Let wi represent the model parameters of the client after the i-
th round of local training, and let η represent the learning rate
of the client. Then, the parameter update of the client model
in i-th round can be expressed as wi = wi−1 − η∇Fk(w).

Because the SGD gradient of the client is generated af-
ter several rounds of training, this is originally intended to
speed up the federated learning and reduce the number of
communications, but it also brings problems. The different
distribution and quantity differences of client data (e.g. label
imbalance, non-iid data) will cause huge differences in SGD
gradients between clients. In this case, the FedAvg algorithm
still simply averages the aggregation weights according to the
size of the training set. So the impact of label imbalance in
the training data of each client will be completely ignored.
This will reduce the convergence rate of the global model and
increase the communication rounds for federated training.

Therefore, we propose SFedAvg algorithm. It is mainly
divided into three steps: initial aggregation, screening and
final aggregation. In the initial aggregation step, we aggregate
the models of each participant (client) more reasonably to
get a preliminary overall model. We require participants to
upload the attack label proportion of the training set in
addition to model parameters and training set size. And this
does not defeat the original purpose of privacy protection.
Because privacy issues in VANET mainly focus on protecting
vehicle location and other travel information, the proportion of
labels will not reveal the owner’s private information. We co-
determine the aggregate weight for each model participating
in the aggregation based on the training set size and the
label proportion. Their contribution to the weight allocation
is 0.7 and 0.3, respectively. This proportion is adjustable,
but the training set size proportion is not recommended to
be less than 0.5 because it is still the first factor to be
considered in the aggregation weight allocation. We let the
size of the training set of K clients be represented by the set
S =

[
s1, . . . , sK ], the attack label proportion is represented

by the set R =
[
r1, . . . , rK

]
. Then the aggregation weight αk

of the k-th client’s model in the aggregation is:

αk = 0.7× sk

sumS
+ 0.3× rk

sumR
(3)

where sumS =
∑K

k=1 s
k and sumR =

∑K
k=1 r

k.
The proportion of attack label in training data of Sybil

attack detection model is usually low. This is because the
attack sample itself is not easy to collect in a real scenario.
The weight allocation strategy we proposed can improve the
influence of attack label.

In the screening step, we first calculate the update gradient
of the preliminary global model and each participant model
obtained in the previous step. Then the cosine similarity
between the update gradient of each participant model and the
update gradient of the preliminary global model is calculated,



and the obtained cosine similarity is sorted from large to small.
Participants behind the third quartile are eliminated because
they are considered to be too different from the overall update
gradient direction, which will reduce the effectiveness of the
federated model.

In the final aggregation step, the participants not eliminated
by the screening step are selected to perform the first aggre-
gation step again. The eliminated participants will not be able
to participate in the aggregation. That is, they will receive an
aggregation weight of 0. At the end of this step, the final model
of the current round of aggregation is obtained.

It is assumed that there are T rounds of federal training, the
set of clients participating in the training is C =

[
c1, . . . , cK

]
,

wt represents the aggregation model of round t, E represents
the number of local training epochs, and η represents the
learning rate. The model uploaded by each client in round
t aggregation is represented as set Wt =

[
w1

t , . . . , w
K
t

]
.

The corresponding aggregation weight for each client model
is α =

[
α1, . . . , αK

]
. rn represents the number of clients

eliminated in each round of aggregation, and its value is
K−int(K×0.75). The corresponding set of clients eliminated
in round t is represented as rmt =

[
rm1

t , . . . , rm
rn
t

]
. Then

the detailed description of the SFedAvg algorithm is shown in
Algorithm 1.

V. EXPERIMENTATION

A. Data Set

To evaluate our proposed solution FedMix, We use the pub-
licly available F2MD [2] simulation framework to provide sim-
ulations of realistic scenarios and generate datasets. Datasets
are important for supervised machine learning techniques.
Datasets in VANET can be obtained through accurate scene
testing and simulation. Currently, the research in the literature
is usually based on the dataset generated by the simulator
to verify the detection scheme because it is challenging to
capture sufficient Sybil attack detection cases in the real world.
Moreover, there are few publicly available datasets, and none
of them are suitable for detecting Sybil attacks. For example,
the VeReMi [3] dataset is the first public misbehavior detection
dataset in VANET. Nevertheless, it only contains five location
tampering attacks, unsuitable for advanced attacks such as
Sybil attacks or DoS attacks. However, the recently released
F2MD simulation framework is a promising one that provides
simulations of advanced attacks, which the public can access
for research purposes. F2MD is an extension of VEINS [17].
VEINS is an open-source framework for vehicular network
simulation, consisting of an event-based network simulator
(OMNeT++) [18] and a road traffic simulator (SUMO) [19].

F2MD can generate two kinds of datasets. One is the
VeReMi dataset. It records the BSM messages received by
each vehicle from neighboring vehicles during the entire jour-
ney and whether the vehicle itself is an attacker. In addition,
for physical layer data analysis, we extend the VeReMi dataset
output by F2MD by adding two fields: the location and the
received signal strength when the vehicle receives the message.
Another dataset generated by F2MD is the BSMList, which

Algorithm 1 The SFedAvg Algorithmic Framework

1: Initialize w0

2: for t = 1, ..., T do
3: for each client k ∈ C in parallel do
4: wk

t = wt−1
5: for e = 1, ..., E do
6: Sample batch p from client k ’s training data.
7: Compute loss l

(
wk

t ; p
)
.

8: Compute gradient of wk
t and update wk

t .
9: end for

10: Send wk
t , s

k, rk to server.
11: end for
12: At FedMix Server:
13: Receive wk

t , s
k, rk(k ∈ C).

14: For initial aggregation step: calculate the aggregation
weight αk for each client according to formula (3)
(k ∈ C).

15: Compute the global model based on all local models
wt =

∑
k∈C

(
αk × wk

t

)
16: For screening step: calculate the gradient of global

model and each local model update diffglobal = wt−
wt−1, diffklocal = wk

t − wt−1(k ∈ C).
17: Compute the cosine similarity for each diffklocal and

diffglobal , and sort them in descending order.
18: rmt ← Obtain the rn clients with the lowest cosine

similarity.
19: For final aggregation step: perform the initial aggre-

gation step for clients that do not belong to the rmt

set to obtain the final model wt.
20: Broadcast wt to each client.
21: end for

contains the results of the basic plausibility and consistency
checks (provided by F2MD) on each message received.

We preprocess the above two datasets to make them more
friendly to attack detection methods based on machine learn-
ing. First, we will calculate the Dist and rDiff values (see
Section IV) and add them to each message record in the
VeReMi dataset. Then we merge the VeReMi dataset and
the BSMList dataset. Specifically, we will extract the basic
plausibility and consistency check of each message in the
BSMList dataset, and make them correspond to the messages
in the extended VeReMi dataset one by one. Finally, the
merged data is sorted according to the ID of the vehicle
receiving the message, the pseudonym ID of the vehicle
sending the message, and the receiving time. Table II shows
a brief summary of each piece of data in the merged dataset.

The merged dataset contains the local dataset for all ve-
hicles. For experimental purposes, we screened all vehicles’
datasets, filtering out vehicles that received very little data.
Then 500ms is used as the extraction window (five consecutive
data from the same vehicle) to extract the features of the time
series data received by each vehicle. The dataset after feature
extraction will be used for model training and testing, with
a division ratio of 4:1. We used the tsfresh [16] open source



TABLE II: Merged dataset

Field Detail
rcv veh id ID of the vehicle receiving the message
sd veh id Pseudonym ID of the vehicle sending the message
rcv time Time when message was received
application-layer
data

Includes BSM data (position, speed, acceleration, etc.) receiv-
ed by each vehicle from surrounding vehicles

physical-layer
data

Including the received signal strength, the distance between
vehicles sending and receiving messages, and the difference
between the estimated signal strength and the actual physical
measurement of signal strength rDiff

bsmCheck
Results of basic plausibility and consistency checks performed
on the BSM (provided by F2MD)

library to extract interpretable features related to time series.

B. Experimental Setup

The simulation runs under the Ubuntu/Linux operating
system. We validated our scheme in the Luxembourg SUMO
Traffic (LUST) [20] and Ulm SUMO Traffic (ULM) scenarios.
Both scenarios are publicly available from F2MD. In order
to carry out Sybil attack detection, we inject four kinds of
Sybil attacks provided by F2MD into the above two simulation
scenarios. The density of attacker vehicles introduced in LUST
and Ulm scenarios is 0.2 and 0.1, respectively. Each attacker
vehicle randomly selects a Sybil attack type. This setting can
verify our proposed solution more comprehensively.

In addition, we use the Keras framework and TensorFlow
framework in the simulation to build and train the model and
simulate the federated and centralized training process. We
conducted multiple experiments on the two training methods
and comparative analysis. In federated training, selecting the
client to participate in the training is usually necessary be-
fore it starts. In order to improve efficiency, the number of
clients should not be too large in general. In our simulation
experiment, we selected ten vehicle entities as clients. In order
to make the data more sufficient, we collect the data of each
vehicle after feature extraction, randomly shuffle them, and
then redistribute them to the ten vehicle entities. In addition,
considering the real scene, data distribution among vehicle en-
tities should be Non-Independent Identically Distribution(Non-
IID). Therefore, we assign different data sizes to vehicle
entities and ensure that there is at least one vehicle entity
with only data for a single category label, thus assigning
them non-iid attributes. Note that the above operations are
only for experimental purposes. The data in the real world are
all local to the vehicle, so there is no need to aggregate and
distribute the data. When the federated simulation starts, these
selected virtual local vehicle entities can only access their own
allocated data for model training, just as if the real vehicles
were trained independently locally. The parameter setting of
federation training is shown in Table III.

For the traditional centralized training, we use the same
parameters as the federated training to train the neural network
model. The neural network model at this time will be trained
for 3000 epochs. In order to facilitate the comparison with
the federated training, the results of every 5 epochs in the

TABLE III: Federation training parameters

Param Detail Value
R Round number 600
C Client number 10
s Number of clients selected for a round 10
B Batch size used at local clients 16
E Epoch number at local clients 5

LR Learning rate of local client 0.01

centralized training are recorded once to correspond to the
results of 1 round of aggregation in the federated training.
Both training methods use the same training set and test set.
At the same time, the architecture of the ANN model used
by them is the same. The model consists of an input layer,
two tightly connected hidden layers, a dropout layer, and an
output layer. We set the model’s hyperparameters as follows:
the number of neurons in each hidden layer is 300, the hidden
layer activation function is ReLU, the output layer activation
function is sigmoid, and the optimization algorithm is SGD,
and the loss function is Binary cross-entropy.

VI. EVALUTION AND DISCUSSION

We evaluate the performance of these models using accu-
racy, precision, recall and f1-score. The accuracy refers to
the ratio of correct predictions (positive and negative) over
all data points. The precision refers to the proportion of the
correct prediction of the positive class to the total prediction
of the positive class. Moreover, recall refers to the proportion
of correctly predicted positive classes to all actual positive
classes. The f1-score is the harmonic mean of the computed
precision and recall values. Precision and recall affect each
other and hold each other down. To balance the precision and
recall estimation of the model, consider using the f1-score. It
can define the overall performance of the model in a single
value.

A. Results of Performance Comparison Between Federated
and Centralized Model

Our first group of experiments is to test the overall per-
formance of federated and centralized training models and
conduct a comparative analysis. We look at the model’s overall
performance from the following two perspectives.

a) Evaluation metrics: We first compare the overall
accuracy of the models trained using the two methods for
attack detection. The Lust scenario and the Ulm scenario
results are shown in Fig. 3(a) and Fig. 3(b), respectively. It can
be seen from the figure that the overall accuracy achieved by
federated training is not lower than that of centralized training.

We also analyzed the overall precision, recall, and f1-score
achieved by the two training methods, as shown in Table V.
The experimental results show that the precision and recall of
the federated model are higher than those of the centralized
model in the Lust scenario. However, the centrally trained
model in the Ulm scenario performs better in precision. As can
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Fig. 3. FL vs Focus Accuracy in two scenario.

be seen from the f1-scores of the two scenarios, the federated
training performed better overall than the centralized training.

TABLE IV: Precision, recall and f1-score of the model trained
using two methods

Scenario Model Precision Recall F1-score

Lust federated 0.985 0.851 0.913
centralized 0.983 0.832 0.902

Ulm federated 0.952 0.842 0.894
centralized 0.961 0.807 0.878

b) Communication cost: In the VANET environment,
the central agency and the local vehicle entity participate in
the training process by communicating wirelessly via DSRC
or V2X technology. The communication cost of federated
training is the cost associated with the local vehicle uploading
or downloading the model as it interacts with the central
agency throughout the training process. The communication
cost of centralized training is the cost associated with the
vehicle uploading all local data to the central agency, including
the vehicle’s BSM data and physical layer data. We compare
the communication costs in terms of the size of data exchanged
between the local vehicle entity and the central agency.

In our experiments, the upload cost for a single round of
federated training is set to the sum of the sizes of all local
models and the sizes of the dataset attributes that need to be
uploaded. Its download cost is set to the sum of the global
model sizes obtained by all local vehicle entities. We recorded
the total size of data exchanged between all vehicle entities
and the central authority over the entire communication cycle
(600 rounds). On the other hand, the communication cost of
centralized training is set to the total size of the VeReMi
dataset and the BSMList dataset. This is because centralized
training requires the central agency to collect local data of
all vehicles, and these two data sets store all local data of
vehicles. We take the Lust scenario as an example to make a
statistical comparison of their communication costs, as shown
in Fig. 4 below.

We observe that the total size of data communicated in
the federated training is relatively small compared to the
centralized training approach. Fig. 3 and Fig. 4 show that the
size of data communicated to achieve a similar accuracy rate
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Fig. 4. Size of data exchanged in Lust scenario.

in the centralized training is relatively larger than in the fed-
erated training method. The communication cost of federated
training is 1087.5K bytes, while the communication cost of
centralized training is 1677721.6K bytes. It is worth noting
that when the density of vehicles in VANET increases, the
data collected locally by vehicles will increase significantly.
The communication costs of centralized training will also
increase dramatically, while federated training will not. This
shows that the communication cost can be saved by using the
federated training method to train the Sybil attack detection
model. Moreover, the greater the density of vehicles, the more
obvious this advantage will be.

B. Results of Comparison Between Cross-layer Information
Fusion Detection and Single-layer Information Detection

Our proposed FedMix uses cross-layer information fusion
detection, which collects both application-layer and physical-
layer data. In the second group of experiments, we compare
the overall detection performance of this fusion detection
with that of collecting only a single layer of data at the
physical or application layer for detection. In order to conduct
a comparative experiment, for the method of collecting only
the physical-layer data for detection, only the data of the
physical-layer part will be used. Meanwhile, the method that
only collects application-layer data for detection will only use
data from the application-layer part and the bsmCheck part
for the application layer. Table I shows the specific contents
of each part of the data. We tested the accuracy and f1-score of
the model obtained by cross-layer information fusion and only
using single-layer information under centralized training and
federated training (using the SFedAvg aggregation algorithm).
In order to make the experiment more convincing, we deployed
this group of experiments in both Lust and Ulm scenarios, and
the experimental results are shown in Table V below.

The experimental results show that the model trained by the
data after cross-layer information fusion in the two scenarios,
whether centralized or federated training, achieves the best
detection accuracy and f1-score. The model trained only with
physical-layer data achieves the lowest detection accuracy and
f1-score.



TABLE V: Comparison results of cross-layer information
fusion detection and single-layer information detection

Scenario Matrix
Centralized Training Federated Training
Multi Phy App Multi Phy App

Lust
accuracy 0.957 0.926 0.946 0.962 0.939 0.951
f1-score 0.902 0.822 0.874 0.913 0.858 0.886

Ulm
accuracy 0.951 0.907 0.942 0.956 0.923 0.951
f1-score 0.878 0.747 0.852 0.894 0.797 0.879

C. Comparison Results of Aggregation Efficiency Between
SFedAvg and FedAvg

Our third group of experiments is to test the aggregation
efficiency of the SFedAvg aggregation algorithm and the
baseline algorithm FedAvg. We conducted experiments in Lust
and Ulm scenarios, respectively, and compared the number
of communication rounds required by the models to achieve
similar accuracy and f1-score using two different aggregation
algorithms. In the Lust scenario, we observe the number of
communication rounds required when the detection accuracy
of the model reaches or exceeds 95% and 96% for the first time
and when the f1-score reaches or exceeds 90% and 91% for
the first time. In the Ulm scenario, we choose to observe the
number of communication rounds required when the detection
accuracy of the model reaches or exceeds 94% and 95% for
the first time and when the f1-score reaches or exceeds 88%
and 89% for the first time. The experimental results are shown
in Table VI.

TABLE VI: Communication rounds required to achieve the
same detection accuracy and f1-score using two algorithms

Lust
Scenario

acc=95% acc=96% f1=90% f1=91%
FedAvg 3 25 7 39
SFedAvg 2 16 2 24

Ulm
Scenario

acc=94% acc=95% f1=88% f1=89%
FedAvg 4 17 36 129
SFedAvg 1 3 5 93

The experimental results show that the SFedAvg algorithm
requires fewer communication rounds and has higher aggre-
gation efficiency when the model achieves the same detection
accuracy and f1-score in the two scenarios.

VII. CONCLUSION

In this paper, we propose a Sybil attack detection system,
called FedMix, which considers cross-layer information fusion
and privacy protection. The system can train the federated
Sybil attack detection model without requiring vehicles to
upload private data such as BSM, and then performs joint
analyses on VANET physical-layer and application-layer data.
We conducted simulation tests in several scenarios provided
by the F2MD simulation framework to verify the effectiveness
of FedMix. The results show that FedMix can provide a
significant high-performance model with low communication
overhead and provide privacy protection.
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