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Abstract. Vulnerabilities in the firmware of embedded devices have led
to many IoT security incidents. Embedded devices have multiple archi-
tectures and the firmware source code of embedded devices is difficult
to obtain, which makes it difficult to detect firmware vulnerabilities. In
this paper, we propose a neural network model called DVul-WLG for
cross-architecture firmware vulnerability detection. This model analyzes
the similarity between the binary function of the vulnerability and the
binary function of the firmware to determine whether the firmware con-
tains the vulnerability. The similarity between functions is calculated by
comparing the features of the attribute control flow graph (ACFG) of the
functions. DVul-WLG uses Word2vec, LSTM (Long Short-Term Mem-
ory) and an improved graph convolutional neural network (GCN) to ex-
tract the features of ACFG. This model embeds instructions of different
architectures into the same space through canonical correlation analysis
(CCA), and expresses instructions of different architectures in the form
of intermediate vectors. In this way, the heterogeneity of architectures
can be ignored when comparing cross-architecture similarity. We com-
pared DVul-WLG with the advanced method FIT and the basic method
Gemini through experiments. Experiments show that DVul-WLG has a
higher AUC (Area Under the Curve) value. We also detected vulnerabil-
ities in the real firmware. The accuracy of DVul-WLG is 89%, while FIT
and Gemini are 78% and 73%, respectively.

Keywords: Vulnerability detection - Binary code similarity - Graph
embedding.

1 Introcudtion

In the era of the Internet of Everything, embedded devices exist in all aspects of
daily life. Security issues caused by embedded devices have aroused widespread
concern. An embedded device is a closed system that boots into a unified software
package called firmware. The lack of security considerations at the beginning of
the firmware design and the reuse of a large amount of code have resulted in
many vulnerabilities in the firmware. In addition, vulnerabilities in the firmware
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can be easily exploited [1]. In July 2020, a research team discovered many serious
security vulnerabilities in three different home hubs Fibaro Home Center Lite,
Homematic, and eLAN-RF-003. These vulnerabilities can lead to sensitive data
leakage, remote code execution, and man-in-the-middle attacks. In December
2020, a hacker used an undiscovered vulnerability to forcibly open the door of a
third of PickPoint’s lockers, causing thousands of packages throughout Moscow
to be at risk of being stolen. From the above-mentioned network attack incidents,
it can be found that the vulnerabilities in the firmware have brought great secu-
rity risks. What’s worse is that we cannot use traditional vulnerability scanning
tools on PCs and mobile devices to detect firmware vulnerabilities.

The detection of firmware vulnerabilities has become increasingly important.
In order to solve this problem, some security researchers have proposed tech-
nologies to dynamically detect firmware vulnerabilities [2, 3]. However, dynamic
detection technology has great limitations. Usually, the firmware is customized
for a specific embedded device, so that the detection method of a certain de-
vice cannot be universal. The dynamic detection usually adopts the method of
firmware simulation. However, the parameters of NVRAM (Non-Volatile Ran-
dom Access Memory) are usually not available, causing security analysts to re-
peatedly hijack certain functions to bypass exceptions so that the program can be
executed. This process is not always feasible and very time-consuming. There-
fore, for large-scale firmware vulnerability detection, static detection methods
are more advantageous. The static detection method for firmware vulnerabili-
ties must be universal and lightweight. Traditional static detection techniques
such as symbolic execution and stain analysis are not suitable. At present, many
static detection methods have solved the problem of detecting vulnerabilities at
the source code level [4, 5]. However, it is difficult to obtain the source code of the
firmware, so these detection methods are not suitable. The detection method of
binary code similarity does not require firmware source code, and it is universal
and lightweight. Therefore, for firmware vulnerability detection, the detection
method of binary code similarity is advantageous and efficient.

As shown in Fig. 1, the binary function can be converted into an attribute
control flow graph (ACFG) by the IDA pro disassembly tool [6,7]. When per-
forming binary code similarity detection, first extract the features of ACFG,
these features can be used to represent ACFG, thereby representing the binary
function. Then the ACFG features are converted into feature vectors through the
pre-trained neural network. Finally, the vector distance formula is used to cal-
culate the distance between the feature vectors, and the vector distance is used
to express the similarity of the binary function. This paper divides the features
of ACFG into three categories: the semantic features of instructions, statistical
features and structural features of graphs. FIT [20] uses the method of word
embedding in natural language processing to extract the semantic information
of instructions. But the traditional word embedding models CBOW (Continuous
Bag-of-Words) [8] and Skip-Gram [9] can only consider the semantic relationship
of instructions under the same architecture. However, firmwares with different
architectures often have the same vulnerabilities, so cross-architecture situations
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should be considered when comparing similarities with vulnerable functions.
When comparing cross-architecture function similarity, it is not only necessary
to maintain the semantic association of instructions in the same architecture, but
also to maintain similar embeddings for instructions with the same semantics
between different architectures, which cannot be achieved by traditional word
embedding models. Regarding the structural features of the graph, Gemini [10]
designed an aggregation algorithm inspired by Struc2vec, which can aggregate
the features of the basic blocks to represent the graphical features of ACFG.
However, this method allows the adjacent nodes of each basic block in the graph
to have the same influence factor, and then attaches the attributes of the ad-
jacent nodes to the basic block itself through nonlinear changes. In fact, the
influence factors of adjacent nodes of the basic block are different, so Gemini’s
extraction of the structural features of ACFG is not accurate.

: v
(—— Vector Distance (—=
Formula

Fig. 1. Schematic diagram of binary code similarity detection.

In view of the above problems, the main challenges of this paper are in two
aspects: One is the semantic feature of ACFG. When comparing binary functions
of cross-architecture firmware, it is necessary to ensure the similarity of instruc-
tion semantics within the same architecture. At the same time, it is necessary to
ensure the relevance of instruction semantics under different architectures. The
second is the structural feature of ACFG graphics. The traditional GCN cannot
extract the structure information of the directed graph, while the ACFG is a
directed graph. We need to improve the GCN to be able to accurately extract
the structure information of the ACFG.

The main contributions of this paper are as follows:

1 This paper uses code similarity analysis to design a cross-architecture firmware
vulnerability detection model. The model combined with deep neural net-
work can accurately extract the semantic and structural features of ACFG.

2 In the process of cross-architecture instruction embedding, this paper com-
pares two classic word embedding models, CBOW and Skip-Gram. At the
same time, ARM instructions and MIPS instructions are embedded in the
same space through the canonical correlation analysis (CCA) method. When
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comparing cross-architecture function similarity, the heterogeneity between
architectures can be ignored, so that the semantic features of instructions of
different architectures are compared in the same dimension, which improves
the accuracy of the comparison.

3 This paper uses DGCN [23] to improve the graph embedding aggregation al-
gorithm proposed by Gemini. According to the principle of DGCN, we assign
different influence factors to the adjacent nodes of the basic block. Through
experimental verification, the method in this paper can better extract the
structural features of ACFG.

The remaining organizational structure of this paper is as follows: In the
second section, we review more related work. In the third section, we describe
the method that Siamese Network embeds the features of ACFG to compare the
similarity. In the fourth section, we evaluate the effectiveness of our proposed
method through experimental analysis. Finally, summarize all the work of this

paper.

2 Relate Work

For our related work, this paper only discusses related technologies for binary
vulnerability detection. In 2008, Gao et al. proposed BinHunt [12], a new tech-
nique for discovering semantic differences in binary programs. They use tech-
niques such as graph isomorphism and symbolic execution to analyze the con-
trol flow graph of the binary program, and can identify the semantic difference
between the original program and the patch program, thereby revealing the vul-
nerabilities eliminated by the patch program. On this basis, Jiang et al. proposed
that the semantic differences between binary programs are easily interfered by
others using simple obfuscating functions. Therefore, they used deep pollution
and automatic input generation techniques to discover the semantic differences
of CFG [13]. However, this method of capturing binary vulnerabilities through
semantic differences relies on instruction semantics and is only suitable for a
single architecture.

In 2013, Martial et al. proposed a polynomial algorithm by fusing the BinDiff
algorithm with the Hungarian algorithm of bipartite graph matching [14]. The
graph-based edit distance calculates a meaningful similarity measure, which sig-
nificantly improves the matching accuracy between binary files. Flake proposed
a heuristic method of constructing isomorphism between function sets in the
same executable file but in different versions [15]. Pewny et al. observe the 10
behavior of basic blocks and obtain their semantics, thereby effectively revealing
the bugs in the binary code [16]. These methods all rely on accurate graphic
matching technology, and have high time complexity, and are not suitable for
large-scale binary vulnerability detection. DiscovRE [17] pre-filtered function
pairs through digital features in order to reduce the costly calculation of graph
matching. However, this method is not reliable and will produce a large number
of false negatives.
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In order to reduce the expensive cost of graph matching, the method of graph
embedding has become a good choice. Graph embedding refers to the mapping
of high-dimensional features in a graph to low-dimensional vector representa-
tions. The embedding vector can accurately represent the structural features in
the graph, the attribute features of each vertex, and the interactive information
between vertices and vertices [18]. For graph embedding vectors, we can use
distance formulas between vectors, such as cos distance, Euclidean distance etc.
to compare the similarity between graphics more easily. In 2016, Feng et al. [6]
first used a codebook-based method to convert the ACFG of a binary function
into a numerical vector, which makes it easier to calculate the similarity between
graphs. After that, CVSSA [19] accurately extracts the features of ACFG at the
binary function level through SVM. Gemini [10] proposed by Xu et al. uses a
neural network to calculate the embedding, which extracts features at the basic
block level, and then expresses the embedding of ACFG through an aggregate
function, which further improves the accuracy of graph embedding. However,
Gemini only expresses the embedding of the basic block through the statistical
features of the basic block, completely ignoring the semantic features in the basic
block, which will have a great limitation. When two basic blocks with completely
different semantics have similar statistical features, Gemini will consider the two
basic blocks to be similar. FIT [20] extracts the semantic features of instructions
through the Word2vec, but instructions of different architectures are embedded
in different spaces. FIT ignores the relevance of semantically equivalent instruc-
tions under different architectures, which leads to inaccurate comparisons of
semantic features of functions under different architectures.

3 Embedded Network

This section will introduce how to convert the ACFG of the binary function
into a graph embedding. For the embedded vector, the distance of the vector
is calculated by the cos distance formula, and then the similarity between the
binary functions is obtained. Here we introduce the theoretical model of the
Siamese Network, which can better explain how the graph embedding network
works.

3.1 Siamese Network

Siamese Network is a new type of neural network architecture. Siamese Network
can learn a similarity metric from training data, which is often used to evaluate
the similarity of input sample pairs. It has shown better capabilities in certain
fields, such as face recognition and signature verification etc. As shown in Fig. 2,
the Siamese Network architecture contains two identical sub-networks (the sub-
networks have the same configuration and parameters). In this paper, these
two networks are designed as ACFG graph embedded networks. These two sub-
networks can convert the input ACFG sample pair into a vector, and then judge
the similarity of the sample pair through the distance formula of the vector.
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Fig. 2. Siamese Network.

The training goal of Siamese Network is to maximize similarity when a given
pair of ACFG samples belong to the same category. The similarity should be
minimized when the sample pairs belong to different categories. Whether the
sample pairs belong to the same category depends on whether they are compiled
from the same source function. As shown in Fig. 2, the input sample pair ACFG1
and ACFG2 are converted into vectors Vec; and Vecy through the graph em-
bedding network. The similarity is measured by the cos distance of the vector,
the measurement formula is as follows:

Vecy - Vecy
cos(Vecy, Vecs) Veall[Veeall (1)
For the input sample pair, we will mark it, if the input is the same category,
mark it as +1, otherwise mark it as -1. Therefore, when training the Siamese
Network, the input is in the form of triples (ACFG;, ACFGs, Label). In this
paper, the loss function is only considered related to the parameters and input,
so the loss function is defined as follows:

L = (Label — cos(Vecy, Vecy))? (2)

When the sample pair belongs to the same category, the closer the cos similarity
value is to 1, the smaller the loss value L. When the sample pairs belong to
different categories, the closer the cos similarity value is to 0, the smaller the
loss value L. Therefore, reducing the loss value L in the iterative process can
meet the training goal of Siamese Network.

3.2 Embedding of Instruction Semantic Features
In Section 3.1, the overall architecture of Siamese Network is introduced. The

most important part is the graph embedding sub-network. How to convert ACFG
into vector representation is also the core work of this paper. As shown in Fig. 2,
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the embedded network is mainly divided into three parts, namely instruction em-
bedding, block embedding and graph embedding. This section mainly introduces
instruction embedding.

Analogous to Word2vec of natural language processing, we regard each basic
block as a sentence, and the instructions in the basic block as words. The classic
word embedding models include CBOW and Skip-Gram. Both are composed of
three layers of feedforward neural networks, which are input layer, hidden layer
and output layer. The input of CBOW is the context of the word, and the context
is used to predict the word. The input of Skip-Gram is the word itself, and the
word is used to predict its context. The basic principles of the two are the same.
This paper takes CBOW as an example to introduce its working principle.

For a given word sequencews;, wa, ..., Wy, wy is the word to be predicted, and
the sliding window size is c¢. The input layer is the context of wy in the sliding
window, and these words are represented by One-hot encoding. The weight ma-
trix from the input layer to the hidden layer is Wi, and the word vector of the
input layer is multiplied by the weight matrix and averaged to obtain the vector
of the hidden layer. The weight matrix from the hidden layer to the output layer
is Ws, and the vector of the hidden layer is multiplied by W5 to get the vector
of the output layer. The vector of the output layer is normalized by the softmax
function and the value with the largest corresponding position in the vector is the
predicted word. The objective function is to maximize the maximum likelihood
estimation:

NS togpluwnluisy) (3)

t=1 —c<j<c

Whether using the CBOW model or the Skip-Gram model will cause a prob-
lem, the instruction embedding of the MIPS architecture and the instruction
embedding of the ARM architecture are not in the same space. This ignores the
semantic association of equivalent instructions between the two architectures,
resulting in inaccurate comparisons of cross-architecture similarity. Inspired by
[21] cross-language embedding, this paper uses CCA to embed MIPS and ARM
instructions into the same space. First, the MIPS and ARM instructions are em-
bedded in different spaces using the Word2vec model, and let X € R™ %% and
2 € R"2%% regpectively denote the vector spaces of the instructions of the two
architectures. Instructions with equal semantics under the two architectures are
mapped to the same space, which is not as easy as multilingual embedding in nat-
ural language. Because in natural language, the semantically equivalent words
in different languages can be obtained through the dictionary. The instructions
are different, and there is no dictionary-like translation between instructions of
different architectures. At the same time, instructions are not atomically struc-
tured like words. Instructions are composed of mnemonics and operands, and
different operands generate a large number of different instructions. In order to
solve this problem, we artificially regard instructions with the same mnemonic
as the same type of instructions, because most of the operations performed by
instructions with the same mnemonic are similar. Based on prior knowledge, this
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paper uses mnemonics to map MIPS and ARM instructions. For example, ‘'move’
in MIPS and MOV’ in ARM are considered equivalent. Through the instruction
dictionary, let the instructions in the two subsets of X/ C X and 2’ C {2 map
one by one. x and y denote a pair of equivalent instructions from X’ and (2
respectively. a and b represent the projection direction, then the vector of x and
y after the projection is expressed as:

o =alz,y =bly (4)
The correlation between the projection vectors 2’ and y’ is expressed as:
Elz'y]

7 5
E[2?] Ey?] )

p(xl7 y/) =
The goal of our optimization is to maximize the correlation p(z’,y’) and output
two projection vectors a and b. Using these two projection vectors, all instruc-
tions of MIPS and ARM can be projected, which can be summarized as:

A,B=CCA(X', ) (6)
> =ATx 0" =B"0 (7)

3.3 Embedding of Structural Features of ACFG

After the instruction embedding is generated, the instruction sequence in the ba-
sic block needs to be aggregated to generate the embedding of the basic block.
Considering that in natural language processing, word embedding is used to rep-
resent sentence embedding. For an ordered sequence of instructions, the RNN
model can effectively mine its semantic information and timing information.
However, the instruction sequence in some basic blocks is too long. If the RNN
model is used in training, the problem of gradient disappearance and gradient
explosion will occur. Therefore, this paper chooses the LSTM model that per-
forms better in long sequences. The LSTM model can summarize the instruction
sequence in the basic block, and finally express all the instruction sequences with
internal correlation through a vector. At the same time, the statistical features
of the combined basic block are shown in Table 1. The combined vector repre-
sents the embedding of the basic block. The basic block embedding formula is
as follows:

Bfea = WblBemb + WbQBsta (8)

Wiy and Wyo represent the weight matrix of instruction semantic feature and
statistical feature, respectively.

After the feature of each basic block is generated, the features of all basic
blocks need to be aggregated as the feature of ACFG. A simple method is to
add the features of all basic blocks to represent the features of ACFG. However,
this method cannot extract the structure of the graph, resulting in insufficient
accuracy of feature extraction. Inspired by Structure2vec, Gemini recursively
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aggregates the features of basic blocks through the topological structure of graph.
After a few steps of recursion, the graph embedding network will calculate a
new vector representation for each basic block. This vector includes the features
of the basic block and the structural features of the graph. Gemini trains the
interaction between nodes through a fully connected neural network. The formula
is as follows:

p) = tanh(Wizy +o( Y pli™Y)) (9)

UEN ()

x, represents the feature vector of the basic block; W; is the matrix coefficient
of the basic block feature; p, represents the new vector representation calcu-
lated by the graph embedding network for node v; N(,) represents the adjacent
node of the basic block v; o represents the fully connected neural network. The
above formula can be understood as for any basic block v, the graph embedding
network calculates a new feature vector for it. This feature vector is obtained
by summing the features of all adjacent nodes of the basic block v and then
undergoing nonlinear changes, and finally adding to the feature vector of the
basic block v. This formula does consider the features of the basic block itself
and the topological features of the graph. But let all adjacent nodes of the ba-
sic block have the same influence factor for summation. Although o has a very
strong nonlinear transformation, it is still not accurate enough to represent the
structural features of the graph.

This paper has made improvements to this. Using GCN to extract the struc-
tural features of the topological graph has become one of the most effective
methods. GCN uses the Laplacian matrix of the graph to implement the con-
volution operation of the topological graph, and its propagation rules are as
follows:

Zp=H®Y = o(D-2 AD" 2 HOW) (10)

Where A4 = A+ In; A are the adjacency matrix of the graph; Iy is the
identity matrix; D is the degree matrix of A; H is the feature of each layer, for
the input layer H is the feature of the basic block; ¢ is the nonlinear activation
function; and W is the training parameter. This propagation formula can extract
the features of undirected graphs better. Unfortunately, ACFG is a directed
graph. If the propagation formula of GCN is used, the direction information of
the directed graph will inevitably be lost, which will have a great impact on
ACFG. In order to be able to use the powerful ability of GCN to extract graphic
features, we are inspired by the DGCN proposed by [11], and retain the direction
information of the graphic when using the GCN propagation formula.

As shown in Fig. 3, we add two matrices to ACFG, the in-degree matrix
Agin and the out-degree matrix Agyy. In-degree matrix means that there is a
node k, and two nodes i and j point to node k at the same time {i = k < j},
let Agin+ = 1. On the contrary, if there is node k pointing to node i and j at
the same time {i < k = j}, let Agout+ = 1. These two matrices are symmetric
because Agin(i,7) = Agin(j,4) and Agout(i,5) = Asout(j,1). Therefore, these
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two matrices can be constructed similar to undirected graph convolution, the
formula is as follows:

Zsin = HHY = 0(D g2 Agin Dyt HOW) (11)
~_1 ~ ~_ 1
ZSout - H(l+1) - U(DSOZtASoutDSOQMH(l)W) (12)

Through these two auxiliary formulas, the directionality of the graph can be
effectively expressed, and then the convolution formula of the undirected graph
is merged. The fusion method used in this paper is splicing, and the fusion
formula is as follows:

Z = Concat(Zp,aZsin, BZsout) (13)

« and f represent the different weights of in-degree convolution and out-degree
convolution, and this weight is obtained through learning. In this way, the struc-
ture of the directed graph ACFG can be extracted through the fused convolution
formula.

(a) In-degree Proximity (b) Out-degree Proximity

Fig. 3. DGCN second-order proximity.

Similar to the representation of basic block features, we combine graph em-
bedding and graph statistical features, as shown in the Function-level of Table 1.
The features of the final ACFG are expressed as follows:

Ffea = WfIZ + WfQFsta (14)

Wy and Wyg are the matrix coeflicients of the graph embedding feature and
the graph statistical feature, and Fl, is the graph statistical feature.

4 FEvaluation

This section mainly introduces the details of the experiment, as well as evaluating
the effectiveness of instruction embedding for spatial projection and evaluating
the effectiveness of using DGCN to extract ACFG graph structures. This paper
compares the most advanced methods such as Gemini and FIT to prove the
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Table 1. Statistical Features

Type Attribute Name Type Attribute Name
No.of String Constants No.of Arithmetic Instructions
No.of Numeric Constants No.of Logic Instructions
No.of Arithmetic Instructions No.of Transfer Instructions
No.of Logic Instructions No.of Transmit Instructions
No.of Transfer Instructions . No.of Basic Blocks
Block-Level No.of Transmit Instructions Function- level No.of Edges
No.of Instructions No.of Function Calls
No.of Calls No.of Incoming Calls
No.of Offspring No.of Instructions
Betweeness No.of Variables

effectiveness of the improved method. Finally, this paper detects real firmware
vulnerabilities and proves that the method proposed in this paper can be applied
to real firmware vulnerabilities detection.

4.1 Implementation

The experiment in this paper is deployed on a server with a 16-core CPU, 128GB
RAM, and 1TB SSD.This paper has established 3 data sets: (1) Data set I is used
to train the graph embedding model. As shown in Table 2, this papaer compiles
different versions of OpenSSL, BusyBox, and FindUtils into binary files of MIPS
and ARM architectures, and opens four different optimization levels: O0, O1, O2,
and O3. The data in the table represents the number of functions under different
architectures of different programs, each function represents an ACFG, a total of
59410 ACFGs. The extraction of ACFG uses IDA pro script written by Gemini,
which can effectively extract the features of ACFG. (2) Data set II is used to
verify the effectiveness of the graph embedding model. As shown in Table 3, we
compile multiple Unix Shell programs such as cat, shown, and cp into binary
programs under the two architectures of ARM and MIPS, and open O0 to O3
four optimization levels. There are 13587 ACFGs in total. (3) Data set III is the
firmware image obtained from real manufacturers, including manufacturers such
as D-Link, TP-Link, Netgear and Buffalo. This paper mainly obtains firmware
with corresponding vulnerabilities from various manufacturers, and is mainly
used for the detection of three vulnerabilities: CVE-2020-1967, CVE-2020-1971
and CVE-2017-15873. For each of these three vulnerabilities, 50 firmware images
are selected for detection.

This paper uses data set I to train Siamese Network, the Batch Size is 10, and
5 sets of similar sample pairs and 5 sets of dissimilar sample pairs are selected
each time. Similarity means that ACFG sample pairs are derived from the same
original function. Similar sample pairs are marked as <ACFG1,ACFG2,+1>,
and dissimilar sample pairs are marked as <ACFG1,ACFG2,-1>. The iterative
principle of the model training process can refer to the third section of this paper.
The learning rate during training is 0.001, the embedding depth of the model is
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128, and the maximum number of iterations is 100. The trained model is tested
on data set II. The Batch Size is also set to 10 during the test, and 5 groups
of similar sample pairs and 5 groups of dissimilar sample pairs are selected each
time. Finally, the TPR (true positive) and FPR (false positive) under different
test sets are obtained, and the ROC curve is obtained.

Table 2. Data set |

OpenSSL BusyBox FindUtils

MIPS 21085 6700 2360
ARM 20513 6512 2240
Total 41598 13212 4600

Table 3. Data set 11

cat chown cp dd Is rm

MIPS 528 1062 1466 788 2092 1048
ARM 480 980 1411 716 2039 977
Total 1008 2042 2877 1504 4131 2025

4.2 Effectiveness of instruction embedding projection

As shown in Fig. 4(a), this paper takes the ‘MOV R0, R8’ instruction in ARM as
an example. It can be seen that due to the heterogeneity of the two architectures,
only the instruction with the mnemonic ‘MOV’ is close to the embedding space
of ‘MOV RO, R8&’. Although Skip-Gram does embed instructions with similar
semantics in the same architecture into similar spaces. But for instructions with
similar semantics under different architectures, they are not in a similar embed-
ding space. In this regard, this paper constructs equivalent translations of MIPS
and ARM instructions, and uses CCA to project instructions in different spaces
into the same space. This allows instructions with similar semantics under dif-
ferent architectures to have similar spatial embeddings. As shown in Fig. 4(b),
the similar embedding of the 'MOV R0, R8’ instruction is no longer only the
instruction with ’"MOV’ as the mnemonic in ARM, but includes the instruction
with 'move’ as the mnemonic in MIPS. This is in line with the expectation
that similar instructions in the same architecture have similar embeddings, and
instructions with similar semantics in different architectures also have similar
embeddings.
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Fig. 4. Instruction embedding space.

In order to prove that the effect of instruction embedding after projection is
better than that of instruction embedding without projection, this paper makes
a comparison. The embedded instruction after projection is represented by Skip-
gram?2, and the embedded instruction without projection is represented by Skip-
graml. The block embedding of the two methods adopts the LSTM model, and
the graph embedding adopts the aggregation algorithm of Gemini. The result is
shown in Fig. 5. In the three different test sets, the model using Skipgram?2 has
a higher AUC value. It can be proved that the effect of instruction embedding
after projection is better.

ROC Curve ROC Curve ROC Curve

,,,,,,,,,,,,,,,,,

(a) ROC on cat (b) ROC on cp (c) ROC on Is

Fig. 5. Comparison of the effectiveness of instruction projection

4.3 Evaluation of graph embedding

The above has proved that the projected instructions have better performance.
But instruction projection is only optimized at the level of instruction embed-
ding. As described in Section 3.4, the graph embedding aggregation algorithm
proposed by Gemini is not accurate enough to extract the graph features of
ACFG. Therefore, we have improved the algorithm. We use ¢2 to represent the
improved aggregation algorithm, and cl to represent the original algorithm of
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Gemini. At the same time, because FIT uses SkipGram and Gemini’s aggre-
gation algorithm, we use Skipgraml_cl to represent FIT. As shown in Fig. 6,
the ROC curves of CBOW2_ ¢2 and Skipgram2_ c2 are basically similar, where
CBOW2 indicates that the original instruction is embedded using CBOW, and
then the instruction is embedded in the re-projection. The effect of instruction
embedding using CBOW and Skipgram is similar, which is also easy to under-
stand, because the two models are the same in principle. In addition, we can
see that the improved effect of the aggregation algorithm is stronger than Skip-
gram2_ cl, which further proves that the aggregation algorithm we proposed can
extract the features of the graph more effectively.

ROC Curve ROC Curve ROC Curve

— coowz_C2 — coowz_c2
— s

ROC Curve ROC Curve ROC Curve

(d) ROC on Is (e) ROC on dd (f) ROC on rm

Fig. 6. Comparison of the effectiveness of instruction projection

It can be seen from the ROC curve that Gemini’s performance is not good.
We found that the data set used by Gemini, although the same source code
has been optimized by different compilers, has different optimization levels. But
most functions of the same origin have the same statistical features, which cause
the statistical features to occupy a large proportion in the learning process of the
graph embedding network. This will lead to a defect that the graph embedding
network ignores the semantic features of instructions in the learning process. As
shown in Fig. 7, Gemini will mistakenly regard basic blocks with similar statis-
tical features but completely different semantic information as similar, resulting
in a high number of false positives. In response to this problem, this paper mod-
ified the data set. We also compiled the same source code into binary codes with
different optimization levels and different architectures. But we will try to select
similar functions with large differences in statistical features. The similar func-



Funcl

Func2

DVul-WLG

PUSHR7,LR

SUB SP,SP,#8

ADD R7,SP,#0

STR RO,[R7,#8+var_4]
STR R1,[R7,#8+var_8]
MOVS R1,40 ; oflag
MOV RO,#Aarm ; file

PUSH {R7,LR}

SUB SP,SP,#8

ADD R7,SP,#0

STR RO,[R7,#8+var_4]
STR R1,[R7,#8+var_8]
BLX getpid

MOVS R3,#0
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tions defined here are the same as Gemini. Different binary functions compiled
from the same source function are similar functions.

BLX open MOV RO,R3
MOVS R3,#0 ADDS R7,#8
MOV RO,R3 MOV SP,R7
ADDS R7,#8 POP {R7,PC}
MOV SP,R7

POP R7,PC

(0,5,1,0,13,3,0) (0,4,1,0,11,3,0)

Fig.7. An example of a binary function with similar statistical features but different
semantics.

4.4 Vulnerability detection of real firmware

In this section, we will detect vulnerabilities in real firmware and compare and
analyze the effectiveness of different methods. At the same time, it proves that
the three features of ACFG proposed in this paper are necessary for similarity
detection.As shown in Fig. 8, the four graphs are the statistics of the similarity
scores of DVul-WLG, FIT, Gemini and Base. Among them, Base means that the
model only uses the semantic features of instructions and the structural features
of graphics during the training process, and does not use statistical features, so
as to compare with other methods. We randomly selected 4000 similar sample
pairs from the data set (compiled by the same original function), among which
the top 80% with the highest DVul-WLG similarity score were in the interval
of [0.797, 1.0]. Therefore, the threshold of DVul-WLG is selected as 0.797. For
firmware functions that use DVul-WLG for similarity detection, if the similarity
score is higher than 0.797, it is considered that there are vulnerabilities in the
firmware function. Similarly, the threshold selection for FIT, Gemini and Base
is 0.741, 0.628 and 0.584 respectively. This also reflects that the model proposed
in this paper has a higher similarity score for similar function pairs.

As shown in Table 4, there are three types of vulnerabilities to detecte: (1)
CVE-2020-1967 is a high-risk vulnerability in OpenSSL. This vulnerability is
caused by the incorrect use of TLS and will lead to a null pointer reference.
Cause the server or client to crash when calling the SSL_ check_ chain() func-
tion. This vulnerability mainly affect OpenSSL 1.1.1d, 1.1.1e and 1.1.1f versions.
This paper selects 50 firmwares with these three versions for testing. DVul-WLG
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(a) DVul-WLG similarity (b) FIT similarity

(¢) Gemini similarity (d) Base similarity

Fig. 8. Similarity scores of similar samples.

successfully identified 47 (94%), FIT successfully identified 40 (80%), ,Gem-
ini successfully identified 33 (66%) and Base successfully identified 25 (50%).
(2) CVE-2020-1971 is a denial of service vulnerability in OpenSSL. The fail-
ure to properly handle the GENERAL_NAME_ cmp function results in a null
pointer reference, which may lead to a denial of service. The main affected ver-
sions are OpenSSL 1.1.1~1.1.1h and OpenSSL 1.0.2~1.0.2w. Among 50 selected
firmwares, DVul-WLG successfully identified 42 (84%), FIT successfully iden-
tified 38 (76%), Gemini successfully identified 35 (70%), and Base successfully
identified 23 (46%). (3) CVE-2017-15873 is an integer overflow vulnerability in
BusyBox, which can cause write access violations. The mainly affects the ver-
sion of BusyBox 1.27.2. Among 50 selected firmwares, DVul-WLG successfully
identified 45 (90%), FIT successfully identified 39 (78%), Gemini successfully
identified 42 (84%), and Base successfully identified 30 (60%).

The above results can prove that the model DVul-WLG proposed in this
paper has higher accuracy than FIT. This is because this paper improves the
accuracy of extracting the structural features of ACFG graphics through the im-
proved GCN method, which proves that the structural features of graphics are
necessary when comparing the similarity of ACFG. The accuracy of DVul-WLG
and FIT is higher than that of Gemini. This is because Gemini did not consider
the semantic features of instructions, which can prove that the semantic fea-
tures of instructions are necessary when comparing ACFG similarities. Finally,
the accuracy of Base is the lowest. This is because Base does not use the statis-
tical features of ACFG. Therefore, statistical features are also necessary when
comparing the similarity of ACFG. In summary, the three features of ACFG
proposed in this paper are all necessary for the comparison of ACFG similarity.
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Table 4. Real firmware vulnerability detection

CVE Number  Vulnerability DVul-WLG FIT Gemini Base
CVE-2020-1967 SSL_ check_ chain 47 40 33 25
CVE-2020-1971 GENERAL_NAME_ cmp 42 38 35 23
CVE-2017-15873 get_ next_ block 45 39 42 30

5 Conclusion

This paper proposes an ACFG embedding model based on code similarity detec-
tion, which can be used for firmware vulnerability detection. This paper uses the
method of instruction embedding to improve the accuracy of extracting seman-
tic information of instructions in ACFG. At the same time, in order to better
compare the similarity of instructions across architectures, this paper uses the
canonical correlation analysis (CCA) method to project instructions in differ-
ent spaces to the same space. Regarding the extraction of structural features
of ACFG graphics, because ACFG is a directed graph, the traditional GCN
method cannot be used to extract structural features. Therefore, this paper uses
the improved GCN method DGCN to extract the structural features of ACFG.
The model proposed in this paper can be used for actual firmware vulnerability
detection and has practical significance.
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