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a b s t r a c t

Software aging is caused by resource exhaustion and can lead to progressive performance
degradation or result in a crash. We develop experiments that simulate an on-line
bookstore application, using the standard configuration of TPC-W benchmark. We study
application failures due to memory leaks, using the accelerated life testing (ALT). ALT
significantly reduces the time needed to estimate the time to failure at normal level.
We then select the Weibull time to failure distribution at normal level, to be used in a
semi-Markov model so as to optimize the software rejuvenation trigger interval. Then
we derive the optimal rejuvenation schedule interval by fixed point iteration and by an
alternative non-parametric estimation algorithm. Finally, we develop a simulation model
using importance sampling (IS) to cross validate the ALT experimental results and the
semi-Markov model, and also we apply the non-parametric method to cross validate the
optimized trigger intervals by comparing the availabilities obtained from the semi-Markov
model and those from IS simulation using the non-parametric method.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that failures of a computer system are more often due to software faults than due to hardware faults [1].
Software faults have been classified into three types according to potential manifestation characteristics: Bohrbugs,
Mandelbugs, and aging-related bugs [2]. Aging-related bugs cause an increasing failure rate, gradual software performance
degradation, and may eventually lead to a system hang or crash. Software aging is caused by the successive accumulation
of the effects of aging-related fault activations. It leads to the exhaustion of system resources, e.g., due to memory leaks,
unreleased locks, non-terminated threads, shared-memory pool latching, storage fragmentation, or similar causes [3–5].
This undesired phenomenon occurs not only in web and application servers, but also in critical applications that require
high dependability. Software aging can cause great losses in safety-critical systems [6], including the loss of human lives [7].
To counteract software aging, a proactive technique called software rejuvenation (SR) has been proposed [4]. Rejuvenation
has been implemented in various computing systems, such as billing data collection systems, telecommunication systems,
transaction processing systems, and spacecraft systems [8–10]. It involves periodically terminating an application process,
cleaning its internal state and restarting it in order to release system resources, so that the software performance is
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recovered. Several indicators of aging can capture the aging behavior [3,1,11]. Such indicators are measurable metrics of
the target system likely to be influenced by software aging.

The phenomena of software aging are experimentally studied using two approaches: Non-Accelerated or Accelerated
testing. The both involve monitoring software aging indicators. Most of the previous experimental research on software
aging and rejuvenation employed the Apache web server as a test bed [12], and then used statistical methods to predict the
time to resource exhaustion [13,4,14,15]. Others used Axis [16,15]. Accelerated testing consists of a variety of test methods
for shortening the life of products, and the aim of such testing is to quickly obtain data for statistical analysis. Such tests
save much time and money [17]. Accelerated testing has been used extensively in hardware life testing. A major difference
between software faults and hardware faults is that software behavior is complex since the activation of software faults is
affected by environmental factors such as concurrency, inferencing memory pool, etc.. Accelerated testing used in software
is relatively new. Due to the difficulty in experimentally studying aging-related system failures by observation of failure
times, recent studies have used the accelerated Life test(ALT) or accelerated degradation tests (ADT) to experimentally inject
faults, and then obtain the time to failures (TTFs) at accelerated stress levels. Matias et al. developed a systematic approach
to accelerate the aging effects at the experimental level [18]. They introduced the concept of aging factors and use different
levels of accelerated workload to increase the system degradation. Based on the degradation data of selected system char-
acteristics, captured through measurements, they apply the statistical technique of accelerated degradation tests (ADT) to
estimate the time to failure in normal condition (without acceleration). In [11] the authors do not use degradation data, but
directly observe failures obtained also under accelerated workloads. In this case, they use another technique called acceler-
ated life tests (ALT) to estimate the time to failure in normal conditions. In both studies the system under test was based on
the Apache web server. Zhao et al. develop experiments that simulate an on-line bookstore, following the standard TPC-W
benchmark [19], to inject memory leaks to intensify memory consumption so as to accelerate application failures [20].

Most analytic models used for capturing software rejuvenation are based on the assumption that the distribution of time
to failure due to software aging is known, and the aim is to determine the optimal times to trigger rejuvenation in order to
maximize system availability or related measures [3,21,16]. The exception is Dohi’s paper [22] that uses a non-parametric
method of optimal rejuvenation scheduling. Whatever approach is used for rejuvenation scheduling, such as measurement
based, analytic, or both, estimated time to failure should be obtained more efficiently. Accelerated testing can be used for
estimating TTF due to software aging to reduce the time and costs. Hence we focus on using the ALT method to obtain the
TTF to solve for the optimal rejuvenation problem.

Memory leaks are recognized to be one of the major software-aging causes leading to resource exhaustion problems
in complex software. In [23], the authors focus on two types of memory problems (fragmentation and leakage) that cause
software aging, presenting an experimental study on the cumulative effect of these problems in software systems [23,24].
Alonso et al. [25] inject memory leaks to intensify memory consumption to derive the nonlinear memory resource behavior,
and then use machine-learning algorithms to predict whether software aging has reached a given threshold. The memory
consumption rate is used to represent the accelerated stress level in our experiments [20]. Memory consumption rate
may be affected by workload or input to the system, but it is reasonable to consider and employ the long term average
memory consumption rate to represent the acceleration factor. In our experiments, we inject memory leaks to the test bed
by explicitly appending objects, which cannot be recycled by the garbage collector, to obtain the acceleration factors denoted
by average memory consumption rate. We then derive the estimate of time to failure (TTF) at different acceleration levels
as well as in normal condition. Such an estimate is then used in an analytic semi-Markov model to determine the optimal
rejuvenation trigger interval [20].

We estimate the optimal rejuvenation schedule by parametric and non-parametric methods. Most of the papers use
the parametric estimation to obtain the optimal rejuvenation schedule [3,11,18,26]. The non-parametric estimation is a
distribution free anddynamicmethod that does not rely on assumptions that the data is fromagivenprobability distribution.
This approach has been used to estimate the optimal software rejuvenation schedule by Dohi et al. [22]. However, to the
best of our knowledge, no research paper has applied both parametric and non-parametric method to estimate the optimal
rejuvenation schedule.

We further develop a detailed simulation model using the importance sampling (IS) technique of the ALT experiment.
IS could greatly reduce the simulation time to obtain the Mean time to Failures (MTTFs) as well as the availabilities in the
semi-Markov process (SMP)model.We cross validate among ALT experiments, simulation and SMPmodel. In the first phase
we cross validate between ALT experiments and simulation, we obtain the TTF results at different accelerated levels from
the simulation model and thence we obtain the non-accelerated TTFs. We then cross-validate the results of the simulation
with measurements from the experiment. In the second phase, we cross validate the availability results estimated from
the simulation model with rejuvenation, the availabilities estimated using non-parametric method from the simulation,
and the semi-Markov availability model. We then go on to use the analytic semi-Markov model to determine the optimal
rejuvenation trigger interval.

The main contributions of this paper are as follows. First, we combine experimentation, statistical analysis using ALT,
probabilistic (semi-Markov) models, optimization, IS and simulation in a single effort. Second, we employ the parametric
with non-parametricmethod to estimate the optimal software rejuvenation schedule. Third, we employ the IS in simulation,
which greatly reduces the simulation time. Fourth, we apply the non-parametric method to estimate the availabilities as
well as the optimized trigger intervals using the data sets derived by IS. Finally, we cross validate among the ALT experiment,
simulation using IS, and SMP model.
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The rest of the paper is organized as follows. In Section 2 we show how to use ALT in systems suffering from software
aging. In Section 3, the experimental setup anddata collection are explained,wherewedescribe howmemory leak is injected
to derive the systemTTF samples at different acceleration levels. In Section 4,we explain the use of theWeibull time to failure
distribution along with a semi-Markov process model in order to optimize the software rejuvenation trigger interval with
the system availability and operational cost as objective functions. In Section 5, fixed point iteration is used to numerically
compute the optimal software rejuvenation trigger interval based on the parametric method of Section 4. Then the non-
parametric method is used to calculate the optimal rejuvenation trigger interval. Subsequently the results of the parametric
and the non-parametric methods are explained. In Section 6, we develop the simulation model using IS to cross validate
the ALT experiment and the SMP model. Thence we apply the non-parametric method to estimate the optimized trigger
intervals using data sets obtained from IS simulations, to cross validate the semi-Markov availability model. Finally, we
present our conclusions in Section 7.

2. ALT method for software aging

Accelerated life tests (ALT) have been successfully applied in many engineering fields [17] to significantly reduce the
experimentation time, in quantifying the life characteristics (e.g., mean time to failure) of a system under test (SUT). By
applying controlled stresses to reduce the SUTs lifetime, the SUT is tested in an accelerated mode, and results are then
adjusted to its normal operational condition. Thus, ALT uses the lifetime data obtained under accelerated stresses to estimate
the lifetime distribution of the SUT for its normal condition. This systematic approach can be divided into four main steps:
(1) selection of accelerating stress, (2) ALT planning and execution, (3) definition of the life-stress aging relationship, and
(4) estimation of underlying life distribution or the pdf for the normal condition. The following sections will discuss each
step in detail.

2.1. Selection of accelerating stress

A fundamental element during test planning is the definition of accelerating stress variable and its levels. Typical
engineering accelerating stresses are temperature, vibration, humidity, voltage, and thermal cycling [17]. However, software
reliability engineering does not have standards related to software accelerating stresses for ALT. Given the nature of aging
related faults, we can determine suitable accelerating stresses based on experiments. Based on [18], we employ memory
consumption rate as the stress factor and use constant stress loading scheme in this paper. We randomly inject memory
leaks into a web server software to intensify its memory consumption rate.

2.2. ALT planning and execution

After selecting the acceleration factor, we can plan the ALT. This activity includes the following elements: number of
stress levels, the amount of stress applied at each level, the allocation proportion in each level, and the sample size. In our
approach to apply ALT for software components, the sample size is the number of test replications. According to the theory,
the ALT test plans can be classified as: traditional, optimal, and compromise plans [17]. The traditional plans usually consist
of three or four stress levels, with the same number of replications allocated at each level. The optimal plans specify only
two levels of stress, high and low. The compromise plans usually work with three or four stress levels, and use an unequal
allocation proportion. A more detailed description of the three plans can be found in [17]. In our approach, the traditional
plan with four levels is used.

2.3. Life-stress aging relationship

Once the SUT is tested at the selected stress levels, the estimate of themean time to failure (MTTF) at normal condition is
to be obtained from the TTF samples obtained at different stress levels. Therefore, we need to build the relationship between
life-stress at accelerated and normal levels. As an example, consider the life-stressmodel that is known as the Inverse Power
Law (IPL) [17]:

L(s) =
1

k · sw
(1)

where L represents an SUT life characteristic (e.g., mean time to failure), s is the stress level, k (k > 0) and w are model
parameters to be determined from the observed failure time samples.

2.4. Lifetime distribution estimation

Assuming that the TTF sample is exponentially distributed, IPL yields the pdf of TTF as:

f (t, s) = kswe−ksw t . (2)
The maximum-likelihood estimation (MLE) method can be applied to estimate the model parameters (k, w), and then

use them to estimate the MTTF, i.e., L(s), for the SUT under normal stress level.
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Fig. 1. Java servlet class.

Fig. 2. Modification of doGet().

3. Experimental study

The ALT experiment used in this paper is the same as in [20]. We study the aging effects of application failures caused by
memory leaks based on a multitier e-commerce web site that simulates an on-line bookstore [19].

3.1. Injecting memory leaks

Our experiments use shopping transactions workload only [27]. We have modified the TPC-W implementa-
tion by changing the TPCW_search_request_servlet to inject memory leaks. The servlet class relationship including
TPCW_search_request_servlet is shown in Fig. 1. Furthermore, we add a piece of code to the servlet so as to modify the
doGet() method inside TPCW_search_request_servlet. The doGet() modification is illustrated in Fig. 2. A random number
from 0 to N is generated, where N is specified in a configuration file. The randomNumber value determines how many re-
quests can use the servlet before the next memory leak is injected. This number is decreased by one on each invocation
of doGet(), i.e., on every visit of the search request page. Since the memory consumption rate would depend on the value
of N , we can simulate this effect by varying N . Based on failure time samples collected under different stress loadings, the
estimate of the time to failure distributions at different acceleration levels as well as at normal condition are obtained.

A JVMmonitoring tool, jmap [28], is used to collect the JVMmemory exhaustion data. We collect the usage of Young plus
Old heaps used, at each five second interval. We also collect runtime memory used by JVM from the servlet perspective.
Each TTF sample is the time from the beginning of a test to the time when the server’s memory is exhausted. Then we use
the runtime memory usage data to calculate the TTFs.
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Table 1
Memory consumption rate and stress levels.

Memory consumption rate (kB/s) N Memory consumption rate per replication
0.0124 Normal level

149.61 4 146.86, 149.22, 149.54, 157.04, 136.2, 153.44, 154.94
82.518 8 64.892, 84.042, 90.645, 88.752, 82.509, 85.847, 80.943
58.132 12 55.331, 58.284, 56.496, 59.213, 56.084, 55.148, 66.368
47.321 16 43.256, 48.649, 46.918, 50.081, 48.227,44.348, 49.768

Table 2
Sample of failure times (seconds).

TTF(S1) TTF(S2) TTF(S3) TTF(S4)

731.101 1322.731 1769.281 2071.165
737.962 1342.926 1770.842 2188.907
738.284 1360.289 1898.677 2202.236
755.586 1382.329 1994.836 2266.199
764.761 1394.484 2014.693 2443.743
766.159 1419.333 2018.450 2558.261
862.257 1476.640 2098.482 2609.083

3.2. Analysis of experimental results

In our experiment, we design four acceleration levels (S1–S4) with N equal to 4, 8, 12, and 16, for each level, respectively.
We run 7 replications at each acceleration level, thus 28 samples are obtained in total. Based on the experiment results, we
calculate the mean memory consumption rate from runtime memory used, at each acceleration level. For each replication,
the memory consumption rate is calculated using the Sen’s slope estimate method [29]. These results are shown in Table 1.
Next, we conduct the experiment removing acceleration factors so as to calculate the memory consumption rate at normal
level.We observe that when theworkload is equal to 100 Emulated Browsers (EBs), the total experimental time is 398,790 s,
or 4.615625 days. The memory consumption rate of Young and Old heaps is approximately 0.0124 kB/s using Sen’s slope
method. The samples of failure times at each acceleration level are shown in Table 2.

The next step is to select the Lifetime distribution. The most used probability distributions in ALT experiments are
from the location-scale family [30]. Examples of distributions from this family are Normal, Weibull, Lognormal, Logistic,
LogLogistic, and Extreme Value distributions. Location-scale distributions have an important property in analyzing data
from accelerated life tests, which is related to their cumulative distribution function (cdf). A random variable Y belongs to
a location-scale family of distributions if its cdf can be written as:

Pr(Y ≤ y) = F(y;µ, σ) = Φ


y − µ

σ


, (3)

where −∞ < µ < ∞ is a location parameter, σ > 0 is a scale parameter, and Φ does not depend on any unknown
parameters. Appropriate substitution [30] shows that Φ is the cdf of (Y − µ)/σ when µ = 0 and σ = 1. The importance
of this family of distributions for ALT is due to the assumption that the location parameter, in (3), depends on the stress
variable, s, that is µ(s), and the scale parameter, σ , is independent of s. This relationship is shown in (4).

Y = log(t) = µ(s)+ σε, (4)

where t is the time to failure, and ε is a probabilistic component modeling the time to failure sample variability. Essentially,
we have a location-scale regression model to describe the effect that the explanatory variable, s, has on the time to failure.
In this work, we evaluate density functions from location-scale family of distributions, and assume their scale parameter
approximately constant (within the same CI) across the stress levels. According to [18], we test the probability distributions
Weibull, Lognormal, and Exponential to identify the best fit. The criterion used to build the best-fit ranking is the log-
likelihood function (Lk) [31]. The fitting results for these three models are shown in Table 3. They are consistent across
all acceleration levels. The Lognormal distribution provides the best fitting results for the four acceleration levels S1–S4,
followed closely by the Weibull distribution. Since Lognormal and Weibull presented very close results, we chose Weibull
density to employ the preventive maintenance analytical approach presented by Chen and Trivedi in [26], which is based
on Weibull distribution. We also chose Weibull with the IPL model to create our life-stress relationship as in the following
section.

4. Optimal software rejuvenation

Based on the results discussed in Section 3.2, we use the preventive maintenance model in [26], with the Weibull time
to failure distribution. We optimize the software rejuvenation trigger interval in order to maximize the system availability
or minimize the operational cost. Fig. 3 shows this model consisting of three states: UP state, or state 0, in which the system
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Table 3
Results of model fitting for accelerated failure times.

Accelerated level Model Lk Best-fit ranking

4(S1)
Lognormal −35.7755 1st
Weibull −37.5017 2nd
Exponential −53.4806 3rd

8(S2)
Lognormal −36.9586 1st
Weibull −37.7957 2nd
Exponential −57.6369 3rd

12(S3)
Lognormal −43.5112 2nd
Weibull −43.1158 1st
Exponential −59.9855 3rd

16(S4)
Lognormal −46.6123 1st
Weibull −46.8550 2nd
Exponential −61.2881 3rd

Fig. 3. Rejuvenation model.

is up; RJ state, or state 1, in which the system is undergoing software rejuvenation, and DOWN state, or state 2, in which
the system is down and under reactive repair. State 0 is the only up state. From state 0 the system will enter state 1 with
a general distribution function, F0(t), for the software rejuvenation trigger interval, or fail and enter state 2 with a general
time to failure distribution F2(t). The distribution function for the duration of software rejuvenation (proactive repair) is
F1(t), and the distribution function for the duration of reactive repair is F3(t).

We assume that the rejuvenation trigger interval is deterministic (t0) and the mean time to carry out the rejuvenation
and reactive repair are t1 and t2, respectively. We use F(t) to represent F2(t) shown in Fig. 3. The two-parameter Weibull
pdf for TTF is given by:

f (t) =
β

η


t
η

β−1

e−


t
η

β
(5)

where,
f (t) ≥ 0, t ≥ 0, β ≥ 0, η ≥ 0,
η = scale parameter,
β = shape parameter (or slope).
The CDF of this Weibull distribution is given by:

F(t) = 1 − e−


t
η

β
. (6)

The sojourn time in UP state is then given by:

h0 =

 t0

0
(1 − F(t)) dt =

η

β
Γ


1
β


G


1
ηβ

tβ0 ,
1
β


(7)

where G(x, β) =
1

Γ (β)

 x
0 e−uuβ−1 du is the incomplete gamma function. Hence, we can get the steady state availability:

Aweib =
h0

h0 + (1 − F(t0))t1 + F(t0)t2
. (8)

According to [30], theWeibull distribution may adopt the same parametrization structure shown in (3), where σ = 1/β
is the scale parameter, and µ = log(η) is the location parameter. Hence, the assumption of same scale parameter across
the stress levels must be evaluated on the estimated values of β after fitting the Weibull model to the four samples of
failure times. We verified that the four beta values are inside the CI calculated for each sample, and their intervals satisfy
the assumption of scale invariance. Table 4 presents the estimates for Weibull parameters, obtained through the maximum
likelihood (ML) parameter estimation method [17].

From Table 4 we can see the value of the shape parameter of the fitted Weibull distribution is high. It means that the
variance of TTF data is low at the same accelerated level. Our experimental study is related tomemory-related aging failures,
the property of which has a fixed upper bound for memory usage before observing failures. Each TTF sample is the time
from the beginning of a test to the time when the servers memory is exhausted. The TTF is determined by the memory
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Table 4
Parameter estimation of Weibull model.

Accelerated level Parameter ML estimate 90% CI
Lower Upper

S1 η1 787.015 753.944 821.536
β1 15.464 10.071 23.743

S2 η2 1409.691 1376.925 1443.237
β2 28.116 17.881 44.209

S3 η3 1992.147 1928.448 2057.949
β3 20.146 12.138 33.436

S4 η4 2423.091 2308.777 2543.065
β4 13.631 8.368 22.202

Table 5
IPL-Weibull parameter.

Parameter ML estimate 90% CI
Lower Upper

β 17.3682 13.7767 21.8959
k 9E−6 8E−6 1.1E−5
w 0.9796 0.9397 1.0195

consumption rate, which is affected by two main factors: one is the frequency of visiting Search Request Page, and the
other is the memory leak injection rate. The frequency of visiting Search Request Page depends on the TPC-W specification,
while the memory leak injection rate is controlled by an integer N . Memory consumption rate have small changes among
replications. Therefore, at each stress level, the variance of TTF data is low, and the shape parameter of the fitted Weibull
distribution is high.

The IPL-Weibull model can be derived by setting η = L(s), yielding the following IPL-Weibull pdf:

f (t, s) = βksw(kswt)β−1e−(ksw t)β . (9)

This is a three-parameter model. The estimated IPL-Weibull parameters are listed in Table 5.
We obtain the MTTF at normal level as 7.6115E+6 s, or 126,858 min when memory consumption rate at normal

level is 0.0124 kB/s. The 90% confidence interval of MTTF at normal level is (5.3730E+6, 1.0782E+7) s, that is, (89,550,
179,700) min. Correspondingly, for the parameter η confidence interval is denoted by (ηlow, ηhigh) and is computed as
(5.3730E+6, 1.0782E+7) s. Also, the parameterβ confidence interval, denotedby (βlow, βhigh) is (13.7767, 21.8959) as shown
in Table 5.

Therefore, from Eq. (8) we derive the steady state availability A = Aweib(η, β), and its confidence interval Alow =

Aweib(ηlow, βlow), Ahigh = Aweib(ηhigh, βhigh). We assume that the mean duration for carrying out software rejuvenation, t1, is
1 min, and the mean time for reactive repair, t2, is 5 min. One objective is to maximize the steady-state availability, and we
can get the optimal time to rejuvenation trigger, t0, Another objective function is to minimize the expected cost. A cost of Cf
per minute is incurred when the system is down due to system failure, and a cost of C ′

f is incurred for each reactive repair
carried out; a cost of Cp per minute is incurred when the system is down for carrying out software rejuvenation, and a cost
of C ′

p is incurred for each rejuvenation action carried out. The total expected cost per minute is thus

C = Cfπ2 + C ′

fπ2/t2 + Cpπ1 + C ′

pπ1/t1, (10)

where π2/t2 and π1/t1 are the average number of reactive repairs and rejuvenation executions per minute, respectively.
We assume that Cp = C ′

p = 1/60, Cf = C ′

f = 5/60. Let C = C(η, β), Clow = C(ηlow, βlow), and Chigh = C(ηhigh, βhigh), so
we derive the cost C , Clow and Chigh.

5. Parametric and non-parametric estimation

In this section, we apply the parametric and non-parametric method to estimate the optimal software rejuvenation
trigger interval.

5.1. Fixed point iteration

Taking the derivative of expression (8) with respect to t0, we obtain Eq. (11) below. Successive substitution is used to
solve Eq. (11) to obtain the optimized rejuvenation trigger interval maximizing the system availability. For minimizing the
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Fig. 4. Iterative behavior of t0 to maximize system availabilities.

Fig. 5. Steady-state availability vs. time to rejuvenation t0 .

operational cost we take the derivative of Eq. (10) to obtain Eq. (12) below.

[t2 + (t1 − t2)e
−


t0
η

β
] + h0(t0) ·

β

ηβ
· (t1 − t2) · tβ−1

0 = 0 (11)

[Dh0(t0)+ Dt1 − (t2 − t1) · t1] ·
β

ηβ
· tβ−1

0 − [D · (1 − e−


t0
η

β
+ t1)] = 0 (12)

where, D = t2Cf + C ′

f − t1Cp − C ′
p.

Using successive substitution to solve formulas (11) and (12), respectively, we derive the optimized rejuvenation trigger
interval t0 of availability Alow , A and Ahigh, considering to maximize the system availability. We obtain 67,309, 99,716, and
146,814 min to t0, respectively, and the corresponding availabilities for A, Alow and Ahigh are 0.9999839, 0.9999893, and
0.9999928. The optimized rejuvenation trigger interval t0 for cost Clow , C and Chigh that minimize the operational cost is
61,456, 92,776, 138,649, respectively. Behavior of the sequence of iteratives solving for optimal t0 is shown in Fig. 4.

Steady-state availability vs. time to rejuvenation trigger, t0, is shown in Fig. 5. The optimal time to trigger rejuvenation
and the corresponding availability are marked in this figure. In this case, the optimal choice of rejuvenation trigger interval
could clearly accrue availability improvement.

The average cost vs. time to rejuvenation t0 is shown in Fig. 6. The optimal software rejuvenation intervals for the cost
models are as short as 61,456–138,649min, while the optimal intervals for the availability models are 67,309–146,814min.
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Fig. 6. Average cost vs. time to rejuvenation t0 .

5.2. Non-parametric estimation

Weuse the statistical non-parametric algorithm to estimate the optimal software rejuvenation trigger interval, given the
sample failure time data. We employ the approach of translating the underlying problem of maximizing system availability
to a graphic one presented by Dohi et al. in [22]. Following Barlow and Campo [32], define the scaled total time on test (TTT)
transform of the failure time distribution:

φ(p) = (1/η)
 F−1(p)

0
F(t) dt (13)

where, η is the mean of the time to failure distribution F(t), and

F−1(p) = inf {t0; F(t0) ≥ p} , (0 ≤ p ≤ 1). (14)

The optimal software rejuvenation trigger interval t0 maximizing the system Aweib is equivalent to obtaining p∗(0 ≤ p∗
≤

1) such as

max
φ(p)

p + t1/(t2 − t1)
. (15)

From Eq. (15), the optimal rejuvenation trigger interval t0 = F−1(p) is determined by calculating the optimal point
p∗(0 ≤ p∗

≤ 1)maximizing the tangent slope from the point (−t1/(t2 − t1), 0) to the curve (p, φ(p)) ∈ [0, 1] × [0, 1].
Suppose an ordered complete observation 0 = x0 ≤ x1 ≤ x2 ≤ · · · ≤ xn of the failure times from a continuous

distribution F , which is unknown. Then the scaled TTT statistics based on this sample are defined by φnj = ψj/ψn, where

ψj =

j
i=1

(n − i + 1)(xi − xi−1), (j = 1, 2, . . . , n;ψ0 = 0). (16)

The empirical distribution function Fn(x) corresponding to the sample data xj (j = 0, 1, 2, . . . , n) is

Fn(x) =


j/n for xj ≤ x < xj+1
1 for xn ≤ x. (17)

By plotting the points (j/n, φnj) (j = 0, 1, 2, . . . , n) and connecting them by line segments is called the scaled TTT plot.
Then, a non-parametric estimator of the optimal software rejuvenation trigger interval t̂0 that maximizes Aweib is given by
xj∗ , where

j∗ =


j|max

φnj

j/n + t1/(t2 − t1)


. (18)

Fig. 7 shows the estimation results of the optimal rejuvenation trigger interval on the two-dimensional graph for A. The
failure data are generated by theWeibull distribution with shape parameters of β , βlow , βhigh and scale parameters of η, ηlow ,
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Fig. 7. Estimation of software rejuvenation trigger interval on the two-dimensional graph.

Fig. 8. Asymptotic behavior of the maximum system availability.

ηhigh, respectively. For 200 failure data points, the estimates of optimal rejuvenation trigger interval for A, Alow , and Ahigh are
t̂0 =101664, 68885, 149308, and the corresponding availabilities are 0.9999839, 0.9999893, 0.9999927.

We examine the asymptotic properties of the estimators developed above, to investigate the number of data points
at which one can estimate the optimal software rejuvenation schedule accurately without fitting the data to a failure
time distribution. The failure data are synthetically generated by the Weibull distribution with shape parameter β and
scale parameter η. Fig. 8 illustrates the asymptotic behavior of the estimates for the system availabilities. The maximum
availabilities are calculated with the estimation algorithm, we change the sample failure data observed by experiment in a
single step from two sample failure data, so that the sample mean η̂ =

n
k=1

xk
n changes as the failure data is observed. It

can be seen that the system availability can be estimated accurately after the number of observations becomes about 20.
Fig. 9 illustrates the asymptotic behavior of the estimate for the optimal software rejuvenation schedule. It is seen that the
estimate of the optimal rejuvenation schedule fluctuates until the number of observations is about 50.

From Fig. 4, we can conclude that parametric estimation will give the fixed optimal value, while from Figs. 8 and 9, we
see that non-parametric estimation of optimal value changes with number of sample failure observation, and converges
at the number 20 or 50 with respect to estimated availability or optimal rejuvenation trigger interval t0. The availabilities
or optimized trigger intervals t0 are very close to those obtained from the fixed point estimations. It is also clear that the
non-parametric approach is adaptive and distribution free.

6. Simulation approach in ALT

We develop a discrete-event simulation model of ALT using C++, which is modeled after the TPC-W experiment in
Section 3, to validate the analytical results derived from the aforementioned IPL models in Section 4. Fig. 10 shows the
queueing model of the program. In this simulation model, each client represents one EB in our experiment, and simulates
the EB’s actions of sending requests and receiving responses. Following the experimental setup presented in Section 3, we
select the workload to be 100 clients. Requests that arrive while the server is busy are placed into a queue. Considering
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Fig. 9. Asymptotic behavior of the optimal software rejuvenation schedule for A.

λ

λ

M terminals

μ

Server

Fig. 10. Queueing model of the simulation program.

that the server in our experiment has only one CPU, we configure the server in the simulation program to work as an FCFS
(First-come, First-served) node, and the length of the queue is set to the sum of Tomcat’s buffer length (acceptCount = 100)
and max threads number (maxThreads = 200) [33].

The TPC-WbenchmarkTM defines three distinctmix ofweb interactions: Browsing, Shopping andOrdering. The termweb
interaction refers to a complete process of requesting for one of the 14 different pages in the e-commerceweb site. It includes
one or more HTTP requests for HTML documents, images files or other web objects. Each EB or client starts from requesting
the Home Page, and then randomly selects the next navigation option according to the current mix of web interactions [27].
We select the Shopping mix in our experiment, and also it is used in our simulation.

6.1. Importance sampling method in simulation

We employ the importance sampling (IS) technique to reduce the simulation time. There are total of 14 pages for TPC-W
benchmark, in which each page is taken as the task module, such as m1,m2, . . . ,m14. Assume that the execution time of
each module is τ1, τ2, . . . , τ14. Let Xt = X(t) represent the running task module at time t . Since a task module transfers to
the next task module according to the transition probability matrix of TPC-W specification, thus the next state relates to the
current state. Accordingly, for t0 < t1 < · · · < tk+1 < t , the conditional probability mass function (pmf) of X(t) satisfies
the Eq. (19).

P(X(tk+1) = ik+1 | X(t0) = i0, X(t1) = i1, X(tk) = ik) = P(X(tk+1) = ik+1 | X(tk) = ik)
ik ∈ {m1,m2, . . . ,m14}, k = 0, 1, . . . . (19)
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Therefore, X(ti) is a discrete time Markov chain(DTMC). Let pij = P(X(tk+1) = j | X(tk) = i), We can obtain the transition
probability matrix of X(ti) as the Eq. (20).

P = [pij] =

 p1,1 p1,2 · · · p1,14
p2,1 p2,2 · · · p2,14
· · · · · · · · · · · ·

p14,1 p14,2 · · · p14,14

 . (20)

Let π = [π1, π2, . . . , π14] represent X(ti) steady state probability vector, which satisfies π = πP and
14

i=1 πi = 1. Let
E(τi) = ai and assume that the average running time of the ith task module is ai. Then X(t) is a semi-Markov process, with
the steady state probability

pi =
πi · ai

14
j=1
πj · aj

.

The IS approach is used to reduce the simulation time. We change the [pij] → [p′

ij],

P ′
= [p′

ij] =

 p′

1,1 p′

1,2 · · · p′

1,14
p′

2,1 p′

2,2 · · · p′

2,14
· · · · · · · · · · · ·

p′

14,1 p′

14,2 · · · p′

14,14

 . (21)

Let π ′ be the steady state probability vector of the new transition probability matrix. Thus

p′

i =
π ′

i · ai
14
j=1
π ′

j · aj

is the steady state probability of semi-Markov chain X(t) at the new transition probability matrix.
Let the aging rate (memory consumption rate) of module i be vi. The average aging rate with the transition probability

matrix P is

v̄ = v1p1 + v2p2 + · · · + v14p14.

The average aging rate with the new transition probability matrix, P ′, is

v̄′ = v1p′

1 + v2p′

2 + · · · + v14p′

14.

Thus, we define the acceleration factor of P to P ′ for IS simulation, s(P, P ′), that is,

s(P, P ′) =
v̄′

v̄
. (22)

Assuming that the average aging rate of different task modules satisfies the following,

v1 ≥ v2 ≥ v3 ≥ · · · ≥ v14,

we increase the visiting probability of the TPCW_search_request_servlet, which belongs to the SREQ page according to
TPC-W specification. Also we reduce the visiting probability of an unimportant page, such as the Home page. For example,

[p′

ij] =

 p1,1 + ϵ p1,2 · · · p1,13 p1,14 − ϵ
p2,1 + ϵ p2,2 · · · p2,13 p2,14 − ϵ

· · · · · · · · · · · · · · ·

p14,1 + ϵ p14,2 · · · p14,13 p14,14 − ϵ

 . (23)

We obtain the π ′ with π ′

1 > π1, π
′

14 < π14 so that the system aging rate becomes larger than that of the original system.
Therefore, the system simulation time will be reduced using the IS approach.

Let T represent the MTTF at normal use level and the T ′ is the MTTF at the accelerated level, as a result we obtain the
following formula,

T = s(P, P ′) ∗ T ′
=
v̄′

v̄
∗ T ′. (24)

6.2. IS parameter settings in simulation

A web interaction in the TPC-W experiment can be divided into two phases. In the first phase, EB sends an HTTP request
to the server asking for the HTML document, and parses the HTML code to get the URLs of other web objects, which are all
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Fig. 11. Work flow of one client in the simulation program.

Fig. 12. Memory usage and garbage collection.

image files in our case. In the second phase, EB sends HTTP requests for these image files one after another, a web interaction
completes when all of the image files are received or a timeout occurs. The quantities of image files on different pages can
be different, so are the numbers of HTTP requests the client sends for different pages. When a web interaction finishes, EB
enters a ‘‘Think’’ phase. ‘‘Think Time’’ is sampled from an exponential distribution withmean being varied from 7 to 8 s [27].
The work flow of one EB is shown in Fig. 11.

In our simulation program, we use this response time of non-queueing case as the service time of each request. The
initial occupancy of the server’s memory is 19,726,336 bytes, and the capacity is 127,729,664 bytes. They are obtained from
the Young plus Old heap memory of Tomcat in our experiment. We leave the Permanent zone out because the usage and
capacity of this zone is kept substantially unchanged during our experiment.

Fig. 12 shows thememory usage and garbage collection in the first 30,000 s of our non-accelerated experiment, in which
100 EBs are used. We observed that the full garbage collection runs approximately every one hour in our experiment,
however, the young generation collections show no obvious regularity. Thememory consumed by processing one request is
defined as (tj− ti) ·v, where tj is the timewhen the current request finished, ti is the timewhen the last request finished, and
v = 2462.9 B/s. These memory objects will be marked as recyclable after the request is processed, and then be collected by
the subsequent full garbage collection. Wemade no distinction between the Young and Old heapmemory in our simulation
program, so we did not add the young generation collection. The memory leak injection method in the simulation is the
same as the one we described in Section 3.1. Depending on a randomNumber between 0 and N , we randomly inject about
1-megabyte of memory leak to the server when the Search Request Page is processed. The injected memory will not be
added to the recyclable memories, so it will never be collected by the garbage collector. When the unrecyclable memory
reaches the capacity of the server, the server becomes invalid, and must be restarted to get back to work again.

Using the above IS in simulation program, we increase the visiting probabilities of the SREQ page, in which the
TPCW_search_request_servlet will be invoked, and in the meantime we reduce the visiting probabilities of the Home page
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Table 6
REj,Si values using IS in simulation.

IS group S1 S2 S3 S4

1 0.0611742 0.0535918 0.0649777 0.0264433
2 0.0618430 0.0267465 0.0635911 0.0109086
3 0.0454371 0.0399137 0.0265406 0.0403616
4 0.0369092 0.0407316 0.0155297 0.0553655
5 0.0740658 0.0439704 0.0169784 0.0119429
6 0.0441900 0.0650622 0.0490446 0.0447249

Table 7
Simulation results in use level (N = 69000) and relative errors.

IS group MTTFs CIs REj,normal

1 7,464,491 (7,296,383, 7,632,599) 0.0119426
2 7,459,400 (7,264,551, 7,654,248) 0.0126530
3 7,590,238 (7,430,392, 7,750,084) 0.0046836
4 7,539,277 (7,339,427, 7,739,126) 0.0019211
5 7,454,041 (7,231,326, 7,676,756) 0.0133798
6 7,526,793 (7,365,989, 7,687,597) 0.0034650

and the SHOP page. The 14 pages from the SREQ to SHOP page represent the state i1, i2, . . . , i14 in Eq. (19). Based on the
original transition probability matrix, specified by TPC-W benchmark, we choose 6 different groups to change the ϵi values
to run the IS simulation, and also 12 replications at each group.

1. ϵ1 = 0.00690, ϵ2 = 0.00310, ϵ3 = 0.05351, the values of the column of ‘‘SREQ’’ add ϵk, k = 1, 2, 3, while the values
of the column of ‘‘HOME page’’ reduce ϵk, k = 1, 2, 3. If the values of the column of ‘‘HOME page’’ are less than those of
ϵk, k = 1, 2, 3, the values of the same row of the HOME and the SREQ page remain unchangeable. The following groups
obey the same rules for the column of the SREQ page adding ϵk, k = 1, 2, . . . , and the column of the HOMEpage reducing
ϵk, k = 1, 2, . . . , if no further explanations.

2. ϵ1 = 0.00690, ϵ2 = 0.00310, ϵ3 = 0.05351, ϵ4 = 0.01390, ϵ5 = 0.02260.
3. ϵ1 = 0.00690, ϵ2 = 0.00310, ϵ3 = 0.05351, ϵ4 = 0.01390, ϵ5 = 0.02260, ϵ6 = 0.02260.
4. ϵ1 = 0.00690, ϵ2 = 0.00310, ϵ3 = 0.05351, ϵ4 = 0.01390, ϵ5 = 0.02260, ϵ6 = 0.02260, ϵ7 = 0.07251.
5. ϵ1 = 0.00690, ϵ2 = 0.00310, ϵ3 = 0.05351, ϵ4 = 0.01390, ϵ5 = 0.02260, ϵ6 = 0.02260, ϵ7 = 0.07251, ϵ8 = 0.47504.
6. ϵ1 = 0.00690, ϵ2 = 0.00310, ϵ3 = 0.05351, ϵ4 = 0.01390, ϵ5 = 0.02260, ϵ6 = 0.02260, ϵ7 = 0.07251,
ϵ8 = 0.47504, ϵ9 = 0.25453, ϵ10 = 0.06950, ϵ11 = 0.07021. The values of the column of ‘‘HOME page’’ reduce
ϵk, k = 1, 2, 3, . . . , 9, and the values of the column of ‘‘SHOP page’’ reduce ϵk, k = 10, 11, and the values of ‘‘SREQ
page’’ add ϵk, k = 1, 2, . . . , 11.

The obtained acceleration factor using Eq. (24), at each group, is 1.0683, 1.08778, 1.3068, 1,38846, 1,653468, and 1.8652,
respectively.

6.3. Cross validation results among ALT, simulation and SMP model

We carried out 7 repeated simulation experiments on acceleration levels S1–S4, in which N equals 4, 8, 12 and 16,
respectively, totaling 6 groups. Thus, there are 6 × 7 × 4 simulation replications. From the simulation, we obtained
the TTF samples in each replication. We go on to obtain the MTTFj,Si, at each group j, where j ∈ 1, 2, . . . , 6, and at
each acceleration level Si, where i ∈ 1, 2, 3, 4. We calculate the relative errors between the MTTFj,Si and the MTTFSi, as
REj,Si = |MTTFj,Si − MTTFSi|/MTTFSi. The REj,Si values at each group are shown in Table 6.

Accordingly, we carried out 14 repeated simulation when N = 69000, comparing with the normal level experiment in
Section 3, at each group using different ϵi values.We obtain theMTTFswith its 90% CIs at each group j. We define the relative
error REj,normal at normal level between MTTFj,sim, the MTTF from the simulation and MTTFnormal, IPL-Weibull in Section 4,
as REj,normal = |(MTTFj,sim − MTTFnormal)|/MTTFj,sim. The calculated REj,normal values as well as MTTFs with their 90% CIs are
shown in Table 7.

From Tables 6 and 7, it can be seen that the 90% CIs ofMTTF at normal level, obtained from the simulation results, fall into
the CIs obtained from the experimental results, thus we consider that the simulation model represents the experimental
testbed adequately.We can see that the 90%CIs of TTF are close towhatwe obtained from the IPL-Weibullmodel in Section 4.

Next, we use the acceleration factor equals to 1.8652 in IS, to introduce both reactive repair and rejuvenation in
our simulation program to cross-validate the availabilities computed from the semi-Markov model. We take 9 different
rejuvenation trigger intervals in our simulation model with reactive repair at non-accelerated level, and use 12 replications
at each rejuvenation trigger interval of 4,038,540, 5,982,960, 7,306,314, 7,553,784, 7,801,254, 8,400,000, 8,808,840,
9,600,000 and 10,800,000 s, among which 5,982,960 is the optimal trigger interval obtained from the semi-Markov model.



J. Zhao et al. / Performance Evaluation 70 (2013) 917–933 931

Fig. 13. Availability comparisons between semi-Markov model and simulation model.

Fig. 14. Zoomed: availability comparisons between semi-Markov model and simulation model.

Then we estimate the system availability at each rejuvenation trigger and the 90% CI applying the F-distribution from
the simulation model with reactive repair. In Fig. 13, we plot the simulation estimated availability results against the semi-
Markov model, Furthermore, in a zoom-in of Fig. 14, we show nine discrete availability points as well as their 90% CIs. From
these figures we can see that the simulation availability results have a reasonably good match with those from the semi-
Markov model. The IS approach greatly reduces the simulation time. When the acceleration factor of the 8th group equals
1.8652, the simulation time using IS is about half of that without using IS.

From Section 5.2, we can see that the obtained availabilities using non-parametric method stabilize at 25 samples. Since
the IS approach may provide the TTFs at normal level of ALT in a tolerably short time, then we apply the non-parametric
method to estimate the optimized trigger interval maximizing the availability. We use the observed TTFs at normal level
of ALT obtained from IS simulation, and there are total 50 × 10 data sets, where each group includes 50 TTFs, and 10
groups. Using above TTFs estimated by non-parametric method, we obtain the optimized availabilities as 0.99999015,
0.99999021, 0.99998961, 0.99998984, 0.99998958, 0.99999005, 0.99998990, 0.99998963, 0.99999043, and 0.99999057.
The corresponding optimized trigger intervals are 111,897, 112,583, 106,035, 108,499, 105,786, 110,709, 109,069, 106,303,
115,179, and 116,822 min. Thus, we successfully cross validate the results of SMP model (in Section 4) by IS simulations.

7. Conclusion

In this paper, we obtain the accelerated life test results by injecting memory leaks. Then, Weibull time to failure distri-
bution of the rejuvenation model is used in a semi-Markov model, to optimize the software rejuvenation trigger interval so
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as to maximize the availability or minimize the operational cost. Secondly, the parametric and the non-parametric methods
are utilized to estimate the optimal software rejuvenation trigger interval. The results show that optimal rejuvenation t0 by
parametric method is stable, while optimal t0 and availabilities obtained by non-parametric estimation adapt to changes
and eventually converge. Finally, we develop a simulation model using IS to cross validate the ALT experimental results and
the SMPmodel. The IS approach greatly reduces the simulation time. We apply the non-parametric method to estimate the
optimized trigger intervals by comparing the availabilities obtained from the SMPmodel and those from IS simulation using
non-parametric method.
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