
Ensuring the Performance of Apache
HTTP Server Affected by Aging

Jing Zhao, Kishor S. Trivedi, Fellow, IEEE,

Michael Grottke, Member, IEEE, Javier Alonso, and Yanbin Wang

Abstract—Failures due to software aging are typically caused by resource exhaustion, which is often preceded by progressive

software performance degradation. Response time as a customer-affecting metric can thus be used to detect the onset of software

aging. In this paper, we propose the distribution-based rejuvenation algorithm (DBRA), which uses a validated M=E2=1=K queuing

model of the Apache HTTP server to decide when to trigger rejuvenation. We compare the performance of the DBRA with the one of

the static rejuvenation algorithm with averaging (SRAA) presented by Avritzer et al. Simulation results show the effectiveness of the

DBRA and its advantages over the SRAA in reducing the average response time. However, the DBRA generally tends to trigger

rejuvenation more frequently than the SRAA, which increases the request blocking probability.

Index Terms—Queuing model, response time distribution, distribution-based rejuvenation algorithm, static rejuvenation algorithm with

averaging, software aging detection

Ç

1 INTRODUCTION

IT is well known that system outages are more due to
software faults than due to hardware faults [1]. Software

faults have been classified into three types according to
their potential manifestation characteristics: Bohrbugs,
nonaging-related Mandelbugs, and aging-related bugs [2].
Software aging is the phenomenon of progressive perfor-
mance degradation of the running software, which may
lead to system crashes or undesirable hangs [3]. It can
happen due to the exhaustion of system resources, such as
memory leaks, unreleased locks, nonterminated threads,
shared-memory pool latching, storage fragmentation, and
the like [4]. This undesired phenomenon exists not only in
commercial software, such as Web and application servers,
but also in critical applications requiring high reliability/
availability. Software aging could also cause great losses in
safety-critical systems [5], including the loss of human lives
[6]. It does not make software fail immediately once started,
but instead it typically leads to the accumulation of internal
error conditions, which is often accompanied by progres-
sive performance degradation of the software until it,
finally, hangs or crashes. To counteract software aging,

Huang et al. [4] proposed a proactive approach called
software rejuvenation. It involves occasionally stopping the
software, cleaning its internal state, and restarting it to
release system resources, so that the software performance
is recovered. Thus, software rejuvenation mends the system
before it fails. It has been implemented successfully in
various systems, such as billing data collection systems [4],
telecommunication systems [7], transaction processing
systems [8], and spacecraft systems [9].

The software aging behavior can be captured by one or
more indicators [10]. Such aging indicators are measurable
metrics of the software system likely to be influenced by
software aging. Software aging and performance degrada-
tion can be gauged by monitoring the consumed system
resources at application and system levels. Measurable
metrics of system/application resources are amount of
memory free/used, swap space free/used, number of
threads in use, and so on, while response time (RT) is a
key measure of the performance at the user/application
level. The variation of RT can be used to infer the evolving
process of software aging. From the client perspective, a
gradually increasing RT may be an evidence of software
aging causing the performance degradation of the server.
The RT values obtained by continuous monitoring can thus
be used to detect the need for rejuvenation so as to
counteract the effect of software performance degradation.

Avritzer and Weyuker [11] witnessed the aging phenom-
enon in telecommunications software, where the service
rate of the software decreases with time, increasing the
queue lengths and eventually causing the loss of packets.
Avritzer et al. [12] built an M/M/c queuing model and
proposed a set of three online algorithms which are able to
distinguish between system performance degradations
caused by software aging and those that are due to bursts
in the arrival process. All three algorithms are based on the
sample averages calculated from the frequently monitored
RT values; this averaging of successive observations
smooths some of the short-term deviations of the RT metric.
In the first one, called the static rejuvenation algorithm with

130 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 11, NO. 2, MARCH/APRIL 2014

. J. Zhao is with the School of Computer Science and Technology, Harbin
Engineering University, 133 Room, 21 Building, No. 145 Nantong
Street, Nangang District, Harbin 150001, China.
E-mail: jingzhao.duke@gmail.com.

. K.S. Trivedi and J. Alonso are with the Department of Electrical and
Computer Engineering, Duke University, 206 Hudson Hall, Durham, NC
27708-0291.

. M. Grottke is with the Department of Statistics and Econometrics,
Friedrich-Alexander-Universität Erlangen-Nürnberg, Lange Gasse 20,
Nürnberg, Bayern 90403, Germany.

. Y. Wang is with the Industrial Engineering Department, Harbin Institute
of Technology of China, Room 224, Yi-Fu Building, No. 92 XiDaZhi
Street, Nangang District, Harbin 150001, China.
E-mail: wangyb@hit.edu.cn.

Manuscript received 13 June 2012; revised 28 Aug. 2013; accepted 2 Sept.
2013; published online 6 Sept. 2013.
For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSC-2012-06-0123.
Digital Object Identifier no. 10.1109/TDSC.2013.38.

1545-5971/14/$31.00 � 2014 IEEE Published by the IEEE Computer Society

averaging (SRAA), the observed RT values are averaged
over a fixed sample size. The second one, referred to as
the sampling acceleration rejuvenation algorithm with
averaging (SARAA), reduces the sample size when a
degradation in performance has been detected. Both
algorithms employ a bucket metaphor: When the average
RT is above (below) a certain threshold, a ball is added to
(or removed from) the current bucket. If this leads to an
overflow (underflow) of the current bucket, we move to the
next (previous) bucket. This process is repeated until the
last bucket overflows, indicating that the RT metric has
degraded sufficiently to warrant the execution of software
rejuvenation. In addition to the sample size used for
calculating RT averages, the number of buckets and the
bucket depth are control parameters of these algorithms.
Compared with these algorithms, which use a rather small
sample size, the third algorithm, called the central-limit-
theorem-based algorithm (CLTA), uses a large sample size
to warrant the approximation of the distribution of average
RT with the normal distribution, following from the central
limit theorem. Avritzer et al. [12] evaluated the performance
of the SRAA, the SARAA, and the CLTA in simulations,
adjusting the control parameters.

The new distribution-based rejuvenation algorithm
(DBRA) presented in this paper also makes use of averages
of the measured RT values. It employs the bucket metaphor
like the SRAA and the SARAA. Similar to the CLTA, it
considers the distribution of the average RT; however, it
makes use of the exact distribution rather than the
asymptotic normal distribution: A ball is added to
(removed from) the current bucket when the average RT
calculated exceeds (is below) the target quantile of the
distribution of average RT. Once all buckets are full,
rejuvenation is triggered. To obtain the target quantile, we
develop an analytic model of the distribution of average RT.

The Apache HTTP server [13] is the most popular Web
server used on the Internet [14], and it is known to suffer
from software aging under certain circumstances and
configurations [15]. Hence, we select it for our study. While
the Apache HTTP server is multithreaded, a request is
handled by its own thread or process throughout the life
cycle of the request, a limit is put on the number of
processes simultaneously allowed in the server, and some
parameters need to be customized [15], [16], [17]. The effect
of aging in the Apache HTTP server may result in gradual
performance degradation, a gradually decreasing service
rate or even unavailability [1]. In practice, these factors need
to be considered to build a queuing model of the Apache
HTTP server. Based on an accurate analytical model
validated by experimental measurements, the distribution
of average RT can be obtained, which may facilitate a
decision on when to trigger rejuvenation using the above-
mentioned DBRA.

In summary, our main contributions are as follows:

. We propose and validate the M=E2=1=K queuing
system for modeling the Apache HTTP server
architectural behavior. Furthermore, we derive
closed-form analytical expressions for the steady-
state probabilities of the model, which to the best of
our knowledge have not been available in the
literature.

. We calculate the RT distribution, and numerically
obtain quantiles of the distribution of average RT to
decide when to rejuvenate the Apache HTTP server.

. We propose the DBRA to ensure the performance of
the Apache HTTP server even under the effects of
software aging. It uses the quantile derived from the
exact distribution of average RT for a given
confidence level to determine the presence of aging.
The simulation results show that the algorithm
presented offers advantages over the SRAA pro-
posed by Avritzer et al. [12].

This paper is an extension of a previous conference paper
[18]. We make the following new contributions: First, we
numerically obtain the quantile of the exact average RT
distribution for a given degree of confidence using the
SHARPE tool [19]. Second, we propose the DBRA employ-
ing this quantile to detect aging and control rejuvenation.
Third, we develop a simulation program to validate the
DBRA and to compare the effectiveness of the DBRA and
the SRAA under different control parameters.

The rest of the paper is organized as follows. Section 2
presents the queuing model of the Apache HTTP server as a
continuous-time Markov chain (CTMC). In Section 3, we
first obtain the RT distribution of the M=E2=1=K model by
the tagged-job approach and then derive its mean and
variance; this information is used to validate the CTMC
model with experimental results. We then describe a
numerical approach to compute the exact distribution of
average RT, and we also calculate its mean and variance. In
Section 4, the DBRA is proposed, and the performance of
the DBRA and the SRAA is evaluated by simulation. The
effectiveness of these two algorithms is compared by
adjusting the control parameters. Finally, Section 5 contains
concluding remarks and the discussion of future research.

2 MODELING THE APACHE HTTP SERVER

To build an analytical model of the Apache HTTP server,
we conduct a two-step process. First, we consider its
working mechanism as well as some of its configuration
parameters. Based on this information, we then propose a
queuing model of the Apache HTTP server and derive the
steady-state probabilities of the underlying CTMC.

2.1 Apache HTTP Server

The Apache HTTP server is structured as a pool of workers
(either threads or processes, depending on the specific
software release), as shown in Fig. 1.

Requests enter the server at the accept queue, where
they wait until a worker is available, i.e., in “idle” state.
When a worker starts to process a request, it switches into

ZHAO ET AL.: ENSURING THE PERFORMANCE OF APACHE HTTP SERVER AFFECTED BY AGING 131

Fig. 1. Apache architecture.

“busy” state. It then remains busy until the current request
has been processed and the response has been sent back to
the end-user. The widely used HTTP 1.1 protocol provides
persistent connections. The MaxClients parameter limits
the size of the worker pool, thereby imposing a restriction
on the processing rate of the server. A parent process is
responsible for launching child processes to handle
requests, and for adjusting the child processes by killing
or spawning them to meet the workload. Besides the
capacity of the server, the extent to which it is subjected to
the aging phenomenon also depends on its configuration. If
the MaxRequestsPerChild is set to zero, no child
processes will ever be killed, speeding up the accumulation
of internal error conditions due to aging-related bugs.

Grottke et al. [15] reported the results of a 14-day-period
experiment executed to estimate the service rate offered by
the Apache HTTP server. With MaxClients set to 250 and
MaxRequestsPerchild set to zero, the request rate was
varied from 350 requests per second and 390 requests
per second, at increments of 10 requests per second. Each
request rate phase took around three days. The authors
concluded that under the aforementioned settings, the
capacity of the Web server amounted to about 390 requests
per second.

2.2 Queuing Model of the Apache HTTP Server

Making use of the above information on the Apache HTTP
server, we build a queuing model for a system that is not
subject to aging. The results obtained from this model will
serve as a baseline to the SRAA and the DBRA for deciding
when to trigger rejuvenation.

We model the service time by a random variable
following an r-stage Erlang distribution. The arriving
requests are queued, the service discipline is FCFS, and
the total number of requests in the system is limited to K;
this implies an M=Er=1=K queuing model [20, p. 537]. In
this paper, we specifically assume a two-stage Erlang
distribution as the service time distribution. Thus, the
queuing model is M=E2=1=K; it can be represented by a
CTMC as shown in Fig. 2. The state denotes the number of
exponential phases to be completed at service rate 2�. With
pi representing the steady-state probability of state i in the
CTMC, we write the following system of steady-state
balance equations for the M=E2=1=K model:

��p0 þ 2�p1 ¼ 0;

�ð�þ 2�Þp1 þ 2�p2 ¼ 0;

�ð�þ 2�Þpi þ 2�piþ1 þ �pi�2 ¼ 0; 2 � i � 2K � 2;

�2�p2K�1 þ 2�p2K þ �p2K�3 ¼ 0;

�2�p2K þ �p2K�2 ¼ 0;

X2K
i¼0

pi ¼ 1:

To derive quantities of interest for our model, we employ
the similarities with its unlimited-buffer-space version, i.e.,
with the M=E2=1 queuing model. The steady-state balance
equations of this latter model can be written as [21, p. 134]

���0 þ 2��1 ¼ 0;

�ð�þ 2�Þ�1 þ 2��2 ¼ 0;

�ð�þ 2�Þ�i þ 2��iþ1 þ ��i�2 ¼ 0; i � 2;

where �i denotes the steady-state probability for i phases in
the system. Although the two models are not perfectly
equivalent, these steady-state probabilities �i of M=E2=1
solve the M½2�=M=1 constant bulk-input model with service
rate 2�, in which two phases are brought in by each batch
arrival [21, p. 134]. The probability �0 is given by

�0 ¼ 1� �;

with � � �=�, like for all G/G/1 models [21, p. 12]. To derive
the steady-state probabilities of the general M½X�/M/1 bulk-
input model, where the number of phases per batch is a
discrete random variable X, Gross et al. [21, pp. 117-119] use
a generating function approach:

P ðzÞ ¼
X1
i¼0

�iz
i; zj j � 1;

CðzÞ ¼
X1
i¼1

ciz
i; zj j � 1;

ð1Þ

with ci denoting the probability that X equals i. For an
M½X�/M/1 bulk-input model with service rate 2�, their
result [21, p. 119] becomes

P ðzÞ ¼ 2��0ð1� zÞ
2�ð1� zÞ � �zð1� CðzÞÞ ; zj j � 1: ð2Þ

More specifically, for our M½2�/M/1 model, where each
batch arrival consists of exactly two requests, c2 ¼ 1 and
ci ¼ 0 for i 6¼ 2; thus, CðzÞ is merely equal to z2. We,
therefore, obtain the following expression for P ðzÞ from (2):

P ðzÞ ¼ 2��0ð1� zÞ
2�ð1� zÞ � �zð1� z2Þ ; zj j � 1;

which can be simplified to

P ðzÞ ¼ � 2

�
� 1� �
z2 þ z� 2=�

; zj j � 1: ð3Þ

Partial fraction expansion of (3) yields

P ðzÞ ¼ 2

�
� 1� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8=�
p � b0

1� b0 � z
� b1

1� b1 � z

� �
;

where

b0 ¼
2

�1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8=�

p and b1 ¼
2

�1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8=�

p :

For 0 < � < 1, both b0j j and b1j j are less than 1, and we can
use infinite geometric sums to write (4) as

P ðzÞ ¼ 2

�
� 1� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8=�
p �

X1
i¼0

�
biþ1

0 � biþ1
1

�
� zi:

132 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 11, NO. 2, MARCH/APRIL 2014

Fig. 2. CTMC of the M=E2=1=K queuing model.

Comparing this with (1) reveals that the steady-state
probability of i phases in the M=E2=1 service system is
given by

�i ¼
2

�
� 1� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8=�
p �

�
biþ1

0 � biþ1
1

�
:

We obtain the steady-state probabilities of the CTMC
related to the M=E2=1=K queuing model by normalizing
the steady-state probabilities �i:

pi ¼
1
G�i; if 0 � i � 2K � 1;
�

2G�2K�2; if i ¼ 2K:

�
ð4Þ

Summing both sides of (4), we derive

X2K�1

i¼0

pi þ p2K ¼
1

G

X2K�1

i¼0

�i þ
�

2G
�2K�2 ¼ 1: ð5Þ

From (5), the normalizing constant G is obtained as

G ¼ 2

�
� 1� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8=�
p

� b0 � b2Kþ1
0

1� b0
� b1 � b2Kþ1

1

1� b1
þ �

2

�
b2K�1

0 � b2K�1
1

�� �
:

With

A ¼ b0 � b2Kþ1
0

1� b0
� b1 � b2Kþ1

1

1� b1
þ �

2

�
b2K�1

0 � b2K�1
1

�
;

(5) can thus be written as

pi ¼
biþ1

0
�biþ1

1

A ; if 0 � i � 2K � 1;
�

2A �
�
b2K�1

0 � b2K�1
1

�
; if i ¼ 2K:

(

An incoming request is accepted unless the queue is full,
implying 2K or 2K � 1 phases in the system. The
probability of acceptance in the M=E2=1=K model, pa, is
therefore, given by

pa ¼ 1� p2K � p2K�1:

3 RESPONSE TIME DISTRIBUTION

In this section, we first derive the cumulative distribution
function (CDF), the mean, and the variance of the random
variable R, denoting the RT of an accepted request in the
M=E2=1=K model. Second, we describe an approach to
computing the CDF (and its quantiles) of the sample
average Rn, calculated from n independently sampled RT
values, in addition to its mean and variance.

3.1 CDF, Mean, and Variance of Response Time

We use the tagged-job approach (see [20, p. 418]) to calculate
the RT distribution of an accepted request in the M=E2=1=K
model. The probability that an arriving request sees i �
2K � 2 phases in the system, conditional that it is accepted,
is given by pi=pa. For such a request, the RT is the sum of the
completion times of iþ 2 phases. As these completion times
are independent and are each exponentially distributed
with rate 2�, the RT follows an ðiþ 2Þ-stage Erlang
distribution with rate 2�. Therefore, the CDF of the response
time R of an accepted request can be written as

FRðtÞ ¼
X2K�2

i¼0

pi
pa
� 1�

Xiþ1

j¼0

ð2�tÞj

j!
e�2�t

 !
: ð6Þ

Likewise, the probability density function of R, fRðtÞ, is a
weighted average of Erlang probability density functions,
and its Laplace transform is the following weighted average
of the Laplace transforms of Erlang probability density
functions:

f	RðsÞ ¼
X2K�2

i¼0

pi
pa
� 2�

sþ 2�

� �iþ2

: ð7Þ

From (7), we easily derive EðRÞ, the expected value of R:

EðRÞ ¼ �df	RðsÞ
ds

����
s¼0

¼
X2K�2

i¼0

pi
pa
� iþ 2

2�
:

Moreover, we obtain V arðRÞ, the variance of R, as

V arðRÞ ¼ EðR2Þ � ðEðRÞÞ2 ¼ d2f	RðsÞ
ds2

����
s¼0

�ðEðRÞÞ2

¼
X2K�2

i¼0

pi
pa
� ðiþ 2Þðiþ 3Þ

4�2
�

X2K�2

i¼0

pi
pa
� iþ 2

2�

 !2

:

We use the expected RT expression for validating the
M=E2=1=K model proposed in Section 2.2. Table 1 shows
the average RT values measured during the experiments
reported by Grottke et al. [15], which we already introduced
in Section 2.1. As the MaxClients parameter was set to
250 during these experiments, we compare the actual
averages with the expected RT for our M=E2=1/250 queuing
model. Table 1 also lists the expected RT values for the
M/M/1/250 model and the M/Er/1/250 models with r
equaling 2, 3, 5, and 10. We obtained these latter values
numerically using the SHARPE tool. The results indicate
that the M=E2=1/250 model achieves a good approximation
of the actual measurements. Under reasonable workloads,

ZHAO ET AL.: ENSURING THE PERFORMANCE OF APACHE HTTP SERVER AFFECTED BY AGING 133

TABLE 1
Average RT Measured and Expected RT for M/M/1/250 and M/Er/1/250 When r Equals 2, 3, 4, 5, and 10

it obtains the best fit. However, as the request arrival
rate approaches the saturation point (i.e., 390 requests
per second), the model fits less accurately.

3.2 CDF, Mean, and Variance of Average Response
Time

Woolet [22] presented a computation technique for RT
distributions that are phase-type, i.e., corresponding to the
absorption time distribution in a CTMC. This idea has been
adapted for calculating the distribution of the average RT
[12], [23], and it is this approach that we employ in the
current paper.

To this end, we require a CTMC whose absorption time
represents the RT in the M=E2=1=K queuing model
discussed here. Indeed, such a CTMC, similar to the one
for the M/M/c/K model, [23], can be found; it is depicted
in Fig. 3, with

qi �
pi

pi þ piþ1 þ � � � þ p2K�2
¼ biþ1

0 � biþ1
1

biþ1
0
�b2K

0

1�b0
� biþ1

1
�b2K

1

1�b1

:

Starting in the initial state T1 at time t ¼ 0, the transient
probability of having reached the absorbing state R by
time t, �RðtÞ, is equivalent to the CDF of the RT in the
M=E2=1=K model.

Differential equations for this CTMC yield

d�T1
ðtÞ

dt
¼ �2� � �T1

ðtÞ;

d�T2
ðtÞ

dt
¼ �2� � �T2

ðtÞ þ 2� � �T1
ðtÞ;

d�TiðtÞ
dt

¼ �2� � �TiðtÞ þ 2� � ð1� qi�3Þ � �Ti�1
ðtÞ;

3 � i � 2K;

d�RðtÞ
dt

¼
X2K
i¼2

2� � qi�2 � �TiðtÞ;

with �T1
ð0Þ ¼ 1 and �Tið0Þ ¼ �Rð0Þ ¼ 0 for 2 � i � 2K.

Using the Laplace transform, we derive

�	TiðsÞ ¼
ð2�Þi�1ð1� q0Þð1� q1Þ � . . . � ð1� qi�3Þ

ðsþ 2�Þi
;

and

s�	RðsÞ ¼
X2K�2

i¼0

qi �
ð2�Þiþ2

ðsþ 2�Þiþ2
� pi þ piþ1 þ � � � þ p2K�2

pa

¼
X2K�2

i¼0

pi
pa
� ð2�Þ

iþ2

ðsþ 2�Þiþ2
:

Thus, the Laplace transform of the derivative of �RðtÞ is
identical to f	RðsÞ, given in (7), confirming that the RT
distribution has indeed been equivalently represented.

Let Rn ¼ 1
n

Pn
m¼1 Rm ¼

Pn
m¼1 Rm=n denote the average

of n independent and identically distributed random
variables Rm, where each Rm has the CDF of the RT in
the M=E2=1=K queuing system shown in (6). To find the
distribution of this sample average Rn following the
approach in [12] and [23], we make use of the well-known
fact that multiplying an exponentially distributed random
variable with rate z by some constant r yields an
exponential random variable with rate z=r [20, pp. 151-
152]. Since all transition times in a Markov chain follow an
exponential distribution, multiplying all transition rates in
Fig. 3 by n results in a Markov chain whose time to
absorption has the same distribution as R=n. The random
variable Rn is the sum of the independent and identically
distributed terms R1=n, R2=n, . . . , Rn=n. Therefore, we can
represent the distribution of Rn by concatenating n such
Markov chains, fusing the initial state T1 of the mth chain
and the absorbing state R of the ðm� 1Þst chain into one
state, say Fm�1, m ¼ 2; . . . ; n, as shown in Fig. 4. Using
SHARPE, we can numerically calculate the absorption time
distribution in the resulting Markov chain, which is
equivalent to the CDF FRn

ðtÞ of the sample average Rn.
As an example, Fig. 5 depicts the results obtained for the
averages of RT values from the M=E2=1/250 queuing model
with � ¼ 350 and � ¼ 390 when the sample size n equals 1,
5, 10, and 15, respectively.

Our DBRA, presented in Section 4.3, employs F�1
Rn
ðpÞ,

the 100p% quantile of the distribution of Rn with con-
fidence level p 2 ð0; 1Þ, to control rejuvenation. In contrast,
the SRAA proposed by Avritzer et al. [12] makes use of the
first two moments of the sample average. It is well known
that the expected value of Rn is identical to the expected
value of R:

EðRnÞ ¼
1

n

Xn
m¼1

EðRmÞ ¼ EðRÞ ¼
X2K�2

i¼0

pi
pa
� iþ 2

2�
:

134 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 11, NO. 2, MARCH/APRIL 2014

Fig. 3. CTMC whose absorption time represents R in the M=E2=1=K model.

Similarly, the variance of Rn is related to the variance of R:

V arðRnÞ ¼
1

n2

Xn
m¼1

V arðRmÞ ¼
V arðRÞ

n

¼
X2K�2

i¼0

pi
pa
� ðiþ 2Þðiþ 3Þ

4�2n
�

X2K�2

i¼0

pi
pa
� iþ 2

2�
ffiffiffi
n
p

 !2

;

and it can thus be calculated using our previous results.

4 REJUVENATION ALGORITHMS AND THEIR

SIMULATION RESULTS

In this section, we briefly review the SRAA due to Avritzer
et al. [12] and propose the new DBRA. Moreover, we
present simulation results for the performance of an Apache
HTTP server in which rejuvenation is controlled by these
two algorithms. Our simulation program implements
the M=E2=1=K queuing model of the Apache HTTP server.
The aging phenomenon is simulated by reducing the service
rate (measured in requests per second) whenever a request
is being served; each decrease is calculated by multiplying
the time interval (measured in seconds) since the end of the
most recent rejuvenation (or since the time simulation
started if rejuvenation has not yet been triggered) with the
constant 1e-9. As simulation progresses, the performance
degradation thus tends to accelerate. We decided on this
approach to simulate aging based on the results of
experiments we conducted with the Apache HTTP server,
adjusting the constant to guarantee a high probability for at
least two failure events during the simulation run for a
system without rejuvenation. A failure event occurs when
the service rate is less than 50 percent of the initial
maximum service rate. The duration of the reactive recovery

after a failure has been set to four seconds. During a failure,
the incoming requests are discarded (i.e., blocked). The
already accepted requests waiting to be served are also
discarded (i.e., dropped). The duration of rejuvenation has
been set to 2 seconds. During rejuvenation, the incoming
requests are discarded (i.e., blocked), while those requests
that have already been accepted and that are waiting to be
processed are preserved. We run each simulation for a
simulation time of 100,000 seconds. To obtain more accurate
results by reducing the simulation error, the behavior under
each scenario is simulated 15 times, and the average of the
results obtained is computed.

Besides studying a Web server employing the SRAA or
the DBRA to decide when to rejuvenate, we also simulate
the system behavior without any rejuvenation. These no-
rejuvenation results serve as a baseline against which to
judge the effects of the two algorithms.

Under each scenario, the performance of the Web server
is evaluated according to three metrics: average RT,
request rejection probability, and request blocking prob-
ability. The request rejection probability is estimated by the
fraction of requests rejected by the system during simula-
tion because the maximum system capacity has been
reached. Similarly, we estimate the request blocking
probability by the fraction of simulated requests that are
discarded due to rejuvenation; naturally, this probability is
zero in the no-rejuvenation cases.

In the following, average RT as well as the request
rejection and blocking probabilities are shown as functions
of the offered load �. We simulate results for the offered
loads 350/390, 360/390, 370/390, and 380/390.

4.1 SRAA

Slightly adapting the notation, we list the pseudocode for
the SRAA proposed by Avritzer et al. [12] as Algorithm 1. It
can be seen that this algorithm places a ball into the current
bucket b if the average calculated from the last n RT values
exceeds the expected value of Rn by b� 1 standard
deviations of Rn, where Rn is the sample average of the
response time for an M=E2=1=K queuing system that is not
subject to aging. If performance degradation due to aging is
experienced, the SRAA therefore tends to fill the buckets
with balls. Once the Bth bucket overflows, rejuvenation is
triggered.

ZHAO ET AL.: ENSURING THE PERFORMANCE OF APACHE HTTP SERVER AFFECTED BY AGING 135

Fig. 4. CTMC whose absorption time represents Rn.

Fig. 5. CDF of Rn for different sample sizes n.

Algorithm 1. Static rejuvenation algorithm with averaging.

1: function SRAA(n, B, D)

2: u 0

3: b 0

4: d 0

5: while n additional observations available do

6: u uþ 1

7: Rn 1
n

Pun
m¼ðu�1Þnþ1 Rm

8: if Rn > EðRnÞ þ ðb� 1Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V arðRnÞ

q
then

9: d dþ 1

10: else

11: d d� 1

12: end if

13: if d > D then

14: d 0

15: b bþ 1

16: end if

17: if d < 0 and b > 1 then

18: d 0

19: b b� 1

20: end if

21: if d < 0 and b ¼¼ 1 then

22: d 0

23: end if

24: if b > B then

25: rejuvenation_route()

26: end if

27: end while

28: end function

The parameters of the SRAA consist of the sample size n,
the number of buckets B, and the bucket depth D, i.e., the

number of balls that fit into each bucket.
Note that the moments of the sample average Rn exactly

apply to the average of observed RT values only if these
values have been independently sampled from the RT

distribution of an M=E2=1=K queuing system. However, at
high loads, the RT values of subsequent requests can be

substantially correlated.

4.2 SRAA Results

We now present the simulation results obtained when

employing the SRAA under different settings. We use the
no-rejuvenation system simulation results as a baseline.

136 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 11, NO. 2, MARCH/APRIL 2014

Fig. 6. Average RT, request blocking, and rejection probability without
rejuvenation and with SRAA.

TABLE 2
Results of SRAA Simulations

Fig. 6a shows the average RT results without rejuvenation,
as well as using the SRAA with the following parameter
values: ðn;B;DÞ ¼ ð1; 10; 30Þ; ð5; 10; 30Þ; ð10; 10; 30Þ; ð15; 10;

30Þ. Figs. 6b and 6c present the request rejection probability
and request blocking probability, respectively. The exact
simulation results for the SRAA are listed in Table 2.

It is clearly seen that the average RT of the system
without rejuvenation is larger, due to the performance
degradation caused by aging. The results also show that as
the sample size n increases, the SRAA triggers rejuvenation
less frequently, leading to a smaller request blocking
probability. On the other hand, increasing the sample size
used by the SRAA from 5 to 10 and from 10 to 15 worsens
the average RT attained by the system, except in the high-
load case � ¼ 380=390. For this high-load case, an interest-
ing behavior of the SRAA is observed: With n equal one, the
SRAA causes a larger average RT, a higher request rejection
probability and a significantly lower request blocking
probability than for the other sample sizes. This is due to
the high autocorrelation in the sequence of RT values at this
load. Calculating averages from subsequently observed RT
values, therefore, tends to smooth short-term fluctuation
less than assumed in the derivation of the moments of the
sample average Rn. The SRAA thus triggers rejuvenations
more frequently, leading to a higher request rejection
probability. For n ¼ 1, where this effect does not play any

role, the SRAA rejuvenates the system less often, which
allows the system queue to fill up, implying both a higher
request rejection probability and a larger average RT of
those requests that do get served.

To study the influence of the number of buckets B on
the SRAA behavior, we run a set of simulations where the
sample size n and the bucket depth D were fixed, while the
number of buckets varied. Fig. 7 summarizes the results.
As expected, a lower number of buckets means a higher
frequency with which rejuvenation is triggered. Hence, the
request blocking probability increases as the number of
buckets decreases.

4.3 DBRA

We develop the DBRA as shown in Algorithm 2. It is very
similar to the SRAA, but it uses the 100p% quantile of the
distribution of the sample average Rn to control software
rejuvenation, instead of the first two moments of this
distribution. In our simulation using the DBRA, we set the
confidence degree p equal to 95, 97.5, and 99 percent. As
before, it should be noted that a high correlation between
subsequent RT values may cause the distribution of their
average to deviate substantially from the distribution of Rn.

Algorithm 2. Distribution-based rejuvenation algorithm.

1: function DBRA(n, B, D, p)

2: u 0

3: b 0

4: d 0

5: while n additional observations available do

6: u uþ 1

7: Rn 1
n

Pun
m¼ðu�1Þnþ1 Rm

8: if Rn > F�1
Rn
ðpÞ then

9: d dþ 1

10: else

ZHAO ET AL.: ENSURING THE PERFORMANCE OF APACHE HTTP SERVER AFFECTED BY AGING 137

Fig. 7. Average RT and request blocking probability with SRAA (n ¼ 5).

TABLE 3
Results of DBRA (95 Percent) Simulations

11: d d� 1

12: end if

13: if d > D then

14: d 0

15: b bþ 1

16: end if

17: if d < 0 and b > 1 then

18: d 0

19: b b� 1

20: end if

21: if d < 0 and b ¼¼ 1 then

22: d 0

23: end if

24: if b > B then

25: rejuvenation_route()

26: end if

27: end while

28: end function

4.4 DBRA Results

In this section, we analyze the results obtained when using

the DBRA to control the rejuvenation cycles, employing the
settings for n, B, and D already studied during our SRAA
simulations.

Table 3 lists the simulation results obtained for the DBRA
with confidence level parameter p equal to 95 percent. Fig. 8
summarizes the average RT, request rejection probability,
and request blocking probability attained. The RT results in
Fig. 8a indicate that the DBRA is able to reduce the expected
RT as compared with the no-rejuvenation case. Similar to
the SRAA, increasing the sample size usually means a
higher average RT, because rejuvenation is triggered less
often as it takes longer to collect a larger sample. Fig. 8b
shows that the rejection probability in the no-rejuvenation
case is greatly larger than that in any of the DBRA scenarios,

138 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 11, NO. 2, MARCH/APRIL 2014

Fig. 8. Average RT, request rejection, and blocking probability without
rejuvenation and with DBRA (CI 95 percent).

Fig. 9. Average RT and request blocking probability with DBRA ðn ¼ 5Þ.

although it is nonzero in many of these scenarios. As
expected, Fig. 8c confirms that the request blocking
probability gets lower as the sample size increases.

The number of buckets has a small effect on the average

RT offered by the system when the DBRA is used to trigger

rejuvenation, as can be seen from Fig. 9a. However, Fig. 9b

shows that there is a clear impact on the request blocking

probability: As the number of buckets increases, the

blocking probability decreases, because rejuvenation tends

to be triggered less frequently.
Furthermore, we also study the effects of the confidence

level p on the average RT, as well as on the request

blocking probability. For the parameters n ¼ 15, B ¼ 10,

D ¼ 30, Fig. 10a depicts the average RT when p is set to

95, 97.5, and 99 percent, while Fig. 10b shows the related

request blocking probabilities. It is observed that the

DBRA guarantees a similar RT under all confidence levels

chosen, whereas a lower blocking probability is achieved

when p ¼ 99%.

4.5 Comparing the DBRA with the SRAA

Finally, we compare both algorithms under the same
parameter settings to evaluate their performance. Fig. 11
summarizes the performance of the SRAA and the DBRA.
For clarity, we only show two cases for each algorithm. We

observe that the system using the DBRA offers better

average RT results in both cases studied. Since the SRAA is

more conservative, triggering rejuvenation less frequently

than the DBRA, the request rejection probability under the

SRAA is larger. However, the blocking probability of the

DBRA is higher than the one attained by the SRAA. This is

especially critical when a small sample size n is used. As the

sample size increases, the blocking probabilities under the

DBRA and the SRAA become similar.

ZHAO ET AL.: ENSURING THE PERFORMANCE OF APACHE HTTP SERVER AFFECTED BY AGING 139

Fig. 10. Average RT and request blocking probability with DBRA for
different confidence levels p.

Fig. 11. Average RT, request rejection, and blocking probability with

SRAA and with DBRA.

5 CONCLUSION

In this paper, we proposed to describe the behavior of the
Apache HTTP server using an M=E2=1=K queuing model.
After deriving closed-form expressions for the steady-
state probabilities as well as the related response time
distribution and its moments, we validated this model by
actual data measured during experiments. We then
obtained the cumulative distribution function, the mean,
and the variance of the response time sample average Rn.
The SHARPE tool was used to numerically calculate the
response time distribution and its quantiles. Based on these
results, we introduced the DBRA to control rejuvenation
and used simulation to compare it with the SRAA
presented by Avritzer et al. We also studied the influence
of the sample size and the number of buckets on the
average response time and the blocking probability.
Finally, we analyzed the performance of the DBRA using
different values of the confidence level parameter.

The results evidenced that the performance of the DBRA
is advantageous over the SRAA to maintain a shorter
average response time offered by the system. However, the
DBRA achieves this by triggering rejuvenation more
frequently, which causes the request blocking probability
to be larger than for a system employing the SRAA.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China under Grant No. 60873036, the
National Research Foundation for the Doctoral Program of
Higher Education of China No. 20070217051, the funda-
mental research funds for the Central Universities (award
numbers HEUCF100601, HEUCFT1007). This work was also
supported in part by the NASA Office of Safety and Mission
Assurance (OSMA) Software Assurance Research Program
(SARP) under a JPL subcontract # 1440119, as well as by the
Dr. Theo and Friedl Schoeller Research Center for Business
and Society.

REFERENCES

[1] S. Garg, A. Puliafito, M. Telek, and K.S. Trivedi, “Analysis of
Preventive Maintenance in Transactions Based Software Systems,”
IEEE Trans. Computers, vol. 47, no. 1, pp. 96-107, Jan. 1998.

[2] M. Grottke, A.P. Nikora, and K.S. Trivedi, “An Empirical
Investigation of Fault Types in Space Mission System Software,”
Proc. IEEE/IFIP Int’l Conf. Dependable Systems and Networks,
pp. 447-456, 2010.

[3] S. Garg, A. van Moorsel, K. Vaidyanathan, and K.S. Trivedi, “A
Methodology for Detection and Estimation of Software Aging,”
Proc. Nineth Int’l Symp. Software Reliability Eng., pp. 283-292, 1998.

[4] Y. Huang, C. Kintala, N. Kolettis, and N.D. Fulton, “Software
Rejuvenation: Analysis, Module and Applications,” Proc. 25th
Symp. Fault-Tolerant Computing, pp. 381-390, 1995.

[5] Y. Jia, L. Zhao, and K.-Y. Cai, “A Nonlinear Approach to
Modeling of Software Aging in a Web Server,” Proc. 15th Asia-
Pacific Software Eng. Conf., pp. 77-84, 2008.

[6] E. Marshall, “Fatal Error: How Patriot Overlooked a Scud,”
Science, vol. 255, no. 5050, article 1347, 1992.

[7] X.M. Zhang and H. Pham, “Predicting Operational Software
Availability and Its Applications to Telecommunication Systems,”
Int’l J. Systems Science, vol. 33, no. 11, pp. 923-930, 2002.

[8] K.J. Cassidy, K.C. Gross, and A. Malekpour, “Advanced Pattern
Recognition for Detection of Complex Software Aging in Online
Transaction Processing Servers,” Proc. Int’l Conf. Dependable
Systems and Networks, pp. 478-482, 2002.

[9] K.-Y. Cai, “Software Reliability and Control,” J. Computer Science
and Technology, vol. 21, no. 5, pp. 697-707, 2006.

[10] M. Grottke, R. Matias Jr, and K.S. Trivedi, “The Fundamentals of
Software Aging,” Proc. First Int’l Workshop Software Aging and
Rejuvenation, pp. 1-6, 2008.

[11] A. Avritzer and E.J. Weyuker, “Monitoring Smoothly Degrading
Systems for Increased Dependability,” Empirical Software Eng.,
vol. 2, no. 1, pp. 59-77, 1997.

[12] A. Avritzer, A. Bondi, M. Grottke, K.S. Trivedi, and E.J. Weyuker,
“Performance Assurance via Software Rejuvenation: Monitoring,
Statistics and Algorithms,” Proc. Int’l Conf. Dependable Systems and
Networks, pp. 435-444, 2006.

[13] Apache Web Server, “Homepage,” http://www.apache.org, 2013.
[14] Nectcraft, “August 2013 Web Server Survey,” http://news.

netcraft.com/archives/2013/08/09/august-2013-web-server-
survey.html, Aug. 2013.

[15] M. Grottke, L. Li, K. Vaidyanathan, and K.S. Trivedi, “Analysis of
Software Aging in a Web Server,” IEEE Trans. Reliability, vol. 55,
no. 3, pp. 411-420, Sept. 2006.

[16] Y.-F. Jia, Y.S. Jing, and K.-Y. Cai, “A Feedback Control Approach
for Software Rejuvenation in a Web Server,” Proc. IEEE Int’l Conf.
Software Reliability Eng./First Int’l Workshop Software Aging and
Rejuvenation, pp. 1-6, 2008.

[17] J. Cao, M. Andersson, C. Nyberg, and M. Kihl, “Web Server
Performance Modeling Using an M/G/1/k*ps Queue,” Proc. 10th
Int’l Conf. Telecomm., pp. 1501-1506, 2003.

[18] J. Zhao and K.S. Trivedi, “Performance Modeling of Apache Web
Server Affected by Aging,” Proc. Third Int’l Workshop Software
Aging and Rejuvenation, pp. 56-61, 2011.

[19] K.S. Trivedi and R. Sahner, “SHARPE at the Age of Twenty Two,”
ACM SIGMETRICS Performance Evaluation Rev., vol. 36, no. 4,
pp. 52-57, 2009.

[20] K.S. Trivedi, Probability and Statistics with Reliability, Queuing and
Computer Science Applications, second ed. Wiley, 2001.

[21] D. Gross, J.F. Shortle, J.M. Thompson, and C.M. Harris, Funda-
mentals of Queueing Theory, fourth ed. Wiley, 2008.

[22] S.P. Woolet, “Performance Analysis of Computer Networks,” PhD
dissertation, Dept. Electrical Eng., Duke Univ., 1993.

[23] M. Grottke, V. Apte, K.S. Trivedi, and S. Woolet, “Response Time
Distributions in Networks of Queues,” Queueing Networks: A
Fundamental Approach, R. Boucherie and N. Van Dijk, eds.,
Springer, pp. 587-641, 2011.

Jing Zhao received the PhD degree in computer
science and technology from the Harbin Institute
of Technology of China in 2006. In 2010, she was
with the Department of Electrical and Computer
Engineering, Duke University, Durham, North
Carolina, working as a postdoctoral researcher
under supervision of Dr. Kishor Trivedi. She is
currently a professor at the School of Computer
Science, Harbin Engineering University of China.
Her research interests include reliability engi-

neering, software aging theory, and dependability modeling.

Kishor S. Trivedi holds the Hudson chair in
the Department of Electrical and Computer
Engineering, Duke University, Durham, North
Carolina. He has been on the Duke faculty since
1975. He is the author of a well-known text
entitled Probability and Statistics with Reliability,
Queuing and Computer Science Applications,
published by Prentice-Hall; a thoroughly revised
second edition (including an Indian edition) of this
book has been published by John Wiley. He has

also published two other books, Performance and Reliability Analysis of
Computer Systems, published by Kluwer Academic, and Queueing
Networks and Markov Chains, published John Wiley. He has published
more than 490 articles and has supervised 44 PhD dissertations. He is
the recipient of the IEEE Computer Society Technical Achievement
Award for his research on software aging and rejuvenation. His research
interests include reliability, availability, performance, and survivability of
computer and communication systems and software dependability. He
works closely in the industry in carrying our reliability/availability analysis,
providing short courses on reliability, availability, and in the development
and dissemination of software packages such as SHARPE, SREPT, and
SPNP. He is a fellow of the IEEE and a Golden Core member of the IEEE
Computer Society.

140 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 11, NO. 2, MARCH/APRIL 2014

Michael Grottke received the MA degree in
economics from Wayne State University, and the
diploma degree in business administration and
the PhD degree from the Friedrich-Alexander-
Universität Erlangen-Nürnberg, Germany. From
2004 to 2007, he was a research associate and
assistant research professor in the Department
of Electrical and Computer Engineering, Duke
University. In 2010, he received the habilitation
degree from the Friedrich-Alexander-Universität

Erlangen-Nürnberg. His research interests include intermediate fields
between statistics, computer science, and business administration, such
as software aging and rejuvenation, software performance, software
engineering economics, and stochastic modeling. He has published
papers on these topics at international conferences as well as in
international journals, including IEEE Computer, the IEEE Transactions
on Reliability, the Journal of Systems and Software, and Performance
Evaluation. He is a member of the IEEE and the German Statistical
Society.

Javier Alonso received the master’s degree in
computer science in 2004 and the PhD degree
from the Technical University of Catalonia
(Universitat Politecnica de Catalunya, UPC) in
2011. From 2006 to 2011, he held an assistant
lecturer position in the Computer Architecture
Department, UPC. Since 2011, he has been a
postdoctoral associate under the supervision of
Professor K.S. Trivedi in the Electrical and
Computer Engineering Department, Duke Uni-

versity, Durham, North Carolina. He has published more than 20 papers
about different aspects of dependability, availability, reliability, and
software aging in premier conferences and journals. He has also
served as a reviewer for the IEEE Transactions on Computers, IEEE
Transactions on Dependability and Security Computing, Performance
Evaluation, and Cluster Computing, and several international confer-
ences. His research interests include dependability, reliability, avail-
ability, and performance of computer and communication systems. He
has special interest in software dependability and software aging and
rejuvenation topics. He is or has been involved in projects funded by
JPL/NASA, NEC, NATO, Huawei, and WiPro.

Yanbin Wang received the PhD degree from
the Industrial Engineering Department, Harbin
Institute of Technology of China, in 2006. In
2010, he was a research associate with the
Department of Electrical and Computer En-
gineering, Duke University, Durham, North
Carolina. He is currently an associate profes-
sor in the Industrial Engineering Department,
Harbin Institute of Technology of China. His
research interests include quality management,

scheduling, and optimization.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ZHAO ET AL.: ENSURING THE PERFORMANCE OF APACHE HTTP SERVER AFFECTED BY AGING 141

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

