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A B S T R A C T
In recent years, with the escalating security demands of the Internet of Vehicles (IoV), concerns
over safety have intensified. To prevent security incidents and privacy breaches, IoV must address
various threats promptly and effectively. The use of deep learning methods for intrusion detection in
IoV has garnered widespread attention. Compared to traditional security defenses, deep learning can
learn from heterogeneous data sources, enhancing the accuracy of detecting various security threats.
However, current research based on deep learning primarily focuses on constructing intrusion detec-
tion models and overlooks the analysis and processing of extensive behavioral data. Moreover, model
training requires access to and transmission of sensitive data, which may lead to high communication
costs and potential privacy leaks. To ensure the network security of IoV, we propose FDL-IDM, an
innovative behavior-analysis-based intrusion detection model leveraging differential privacy within
federated learning. It extracts driving behavior spatiotemporally and employs noise perturbation pre-
aggregation, reducing communication costs and ensuring privacy without compromising accuracy.
Specifically, we process data from both temporal and spatial dimensions. Data are grouped based
on sender identity and then sliced according to the time sequence to create state matrices that vary
over time, enhancing the performance and robustness of the detection model. Next, we incorporate an
attention mechanism to merge outputs from each time step and hidden layer, strengthening the time
series model and reducing information loss. Lastly, in federated learning, we add noise perturbation
to the uploaded parameters, reducing the risk of privacy breaches. Additionally, we employ a random
scheduling strategy during training to select clients and assign an adjusted learning rate that decreases
with iterations, enhancing the stability of model training. Therefore, FDL-IDM helps prevent security
attacks and protect IoV privacy. Through experiments and privacy analysis, as well as tests on vehicle-
level devices, FDL-IDM achieved F1-scores of 0.9751, 0.9851, and 0.9789 on three public datasets,
demonstrating not only high accuracy but also robust privacy protection capabilities.

1. Introduction
In recent years, with the rapid development of mobile

communication technology, the Internet of Vehicles (IoV),
as an emerging and promising paradigm within the new
generation of Intelligent Transportation Systems (ITS), is
anticipated to bring revolutionary changes to the underlying
communication and transportation infrastructure[19]. As ve-
hicles connect to mobile communication networks, achiev-
ing interconnectivity with surrounding infrastructure and the
public internet, they may be exposed to various network
attacks[37]. These assaults have the potential to take control
of vehicles on the road, posing a serious challenge to human
life and safety[37, 28, 40, 7]. From Fig. 1, the security threats
faced by the IoV can be primarily categorized into two types:
one pertains to attacks on the IoV itself, and the other relates
to attacks associated with the vehicle’s connection to the
external world network.

Although numerous traditional security mechanisms,
such as encryption and decryption techniques and identity
authentication technologies, have been deployed in IoV,
these mechanisms often lack proactive defensive capabilities
and are not sufficiently efficient in timely detecting new types
of attacks. Therefore, it is particularly important to research

∗Corresponding author
72117004@mail.dlut.edu.cn (R. Chen); chenxyz@mail.dlut.edu.cn

(X. Chen); zhaoj9988@dlut.edu.cn (J. Zhao)
ORCID(s):

and develop intrusion detection models that can protect com-
munication entities and vehicle data from malicious attacks.
By employing intrusion detection technology, IoV systems
can promptly identify and respond to various degrees and
types of network attacks, effectively isolating compromised
network regions or switching the system to a secure mode,
thereby significantly reducing safety threats during vehicle
operation. Intrusion detection technology driven by deep
learning is capable of processing massive amounts of data
and learning from heterogeneous sources, greatly enhancing
the accuracy of IoV devices in detecting various security
threats within the IoV[1]. Despite the widespread applica-
tion of deep learning technologies in IoV intrusion detection
systems, current systems still face three main challenges.

The first challenge is that current research on intrusion
detection focuses on model construction while neglecting
behavior analysis. This leads to a decline in model detection
performance in different communication scenarios and when
dealing with various attacks, as well as issues with the
model’s capacity to converge effectively during training. For
instance, during vehicle operation, the sunroof command is
not frequently used. Behavior analysis can reveal that if the
sunroof is used frequently at a certain point by the user,
such a command is highly suspicious[4, 19, 41]. The second
challenge lies in the fact that IoV data in vehicle contain
a considerable amount of user privacy. Current models,
during training, involve a vast array of private data. However,
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current intrusion detection research does not address this
issue and directly uses unencrypted user data for model
training and detection. If a hacker targets the detection model
and acquires the unencrypted model data, then reverses this
to obtain the original data, this could lead to a breach of
IoV privacy data[43, 42, 30]. The third challenge is that
communication bandwidth within the IoV is still a very
precious resource. Current model training adopts distributed
training methods to accelerate the process, but this approach
can impose a significant burden on communication due to
the exchange of training data[42, 19, 38].

To address the existing challenges, we propose a novel
differential privacy-preserving federated learning-based in-
trusion detection model called FDL-IDM centered around
attack behavior analysis. This model’s data processing al-
gorithm analyzes driving behavior from a spatiotemporal
state perspective, yielding data that includes temporal state
features. At the same time, noise perturbation is added prior
to parameter aggregation, which reduces communication
cost and protects model privacy.

Firstly, we propose a dataset processing algorithm that
analyzes IoV communication data, a rich source of user
behavior information as reflected in the driver’s operational
patterns [16]. This information is critical for differentiating
between legitimate driving activities and hacker-induced
anomalies. The algorithm harnesses the homogeneity prop-
erty in the data, which stems from consistent driving behav-
iors, to categorize the data both temporally and spatially.
By organizing the data based on the source address and
capitalizing on this homogeneity, we construct dynamic state
matrices. This approach not only captures the evolution of
driving behavior over time but also enhances the detection
capabilities for anomalous activities.

Subsequently, an improved temporal sequence model is
employed to convert the segmented data blocks into vector
data forms of behavioral characteristics. That is, the tem-
poral sequence model uses an additive attention mechanism
[14] to combine the output of each time step with the final
hidden layer through additive computation, thereby endow-
ing the behavioral features with more behavior information
and further enhancing the accuracy and stability of the
detection model.

Finally, We employ a federated learning algorithm that
trains the detection model without sharing local clients’ data
with the central server[39, 44]. The server aggregates per-
turbed model parameters, enhanced with differential privacy
noise [34, 22], reducing communication cost and bolstering
privacy. A stochastic scheduling method [39] aligns training
with real-world scenarios and improves robustness. Our
analysis and experiments confirm the algorithm’s compli-
ance with differential privacy standards.

Above all, we are the major contribution of this work is
as follows:

• For the first time in the field of IoV intrusion detection,
we propose federated learning with differential pri-
vacy, innovatively proposing a data processing algo-
rithm for driving behavior analysis that considers both
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Figure 1: A hierarchical example of the IoV detection model.

temporal and spatial dimensions. The aim is to sig-
nificantly enhance the effectiveness of model training
at reduced communication costs while simultaneously
minimizing the risk of privacy breaches for clients,
and maintaining the precision of the model’s detection
capabilities.

• We devise a novel data processing algorithm for user
driving behavior analysis across temporal and spa-
tial dimensions based on our principle of data ho-
mogeneity. It identifies behavior-rich data from tar-
geted driver-device interactions within specified time-
frames. Grouping and normalizing this data, we create
a time-reflective state matrix, boosting the accuracy
and reliability of federated learning models. Addi-
tionally, we improve our temporal sequence detection
model with an additive attention mechanism that en-
riches behavior features, enhancing detection preci-
sion.

• We use federated learning to train our proposed model,
reducing communication pressure between clients and
central servers. We use a random strategy mechanism
to select the clients to be trained, making the model
training more stable and with better generalization
performance, with small errors between training and
test datasets. We also use the Laplace noise mecha-
nism to add perturbation to the local model’s weight
parameters, ensuring that even if a hacker obtains the
weight parameters, they cannot reverse engineer the
original data, further protecting the model’s privacy.
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• We conduct experiments and validations on three
publicly available datasets, UNSW NB-15[26], CAN-
intrusion-dataset[20], and CIC-IDS 2017[31], and
compare our model with the latest models. The ex-
perimental results show that our model achieves F1
values of 0.9751, 0.9851 and 0.9789 respectively. Ad-
ditionally, we publicly release our dataset processing
algorithm and model implementation code to reduce
the scarcity of reproducible and effective models in
this field.

The rest of this paper is organized as follows. Section
2 summarizes background and related work. In section 4,
we present a background on federated learning versus local
differential privacy, and the deep learning algorithms used
by the intrusion detection model. In Section 3, we introduce
the threat models that need to be studied in this paper. In
section 5, we elaborate on the overall system design of the
intrusion detection model, the newly designed datasets pro-
cessing algorithm and the detection model training process.
Section 6 and 7 presents comparative experiments on the
detection models. Section 7.7 concludes the work.

2. Background and Literature Review
IoV security has gradually become a focal point of

concern in both research and industry circles. This section
will review research works in the related fields to identify
gaps our study aims to fill.
2.1. Intrusion Detection in In-Vehicle Network of

IoV
In the field of intrusion detection research for in-vehicle

networks, a variety of methods have been proposed to iden-
tify anomalous vehicle behaviors and faulty sensors. No-
tably, some of these methods identify anomalies by analyz-
ing patterns of normal behavior, effectively reducing com-
putational costs. These methods do not require pre-labeling
of attack data; instead, they detect by constructing models
of normal behavior, where any deviation from established
patterns may indicate an anomaly. For instance, Almutlaq
[4] developed a method utilizing a set of rules to detect
attacks on the vehicle’s CAN bus, significantly reducing the
performance overhead of the model.

With the rise of deep learning technologies, due to
their excellent automatic classification capabilities and the
advantage of obviating manual intervention, these have been
widely applied in the field of vehicle anomaly detection. For
instance, Stefano et al. [23] proposed an intrusion detection
system (IDS) using a Long Short-Term Memory (LSTM)
autoencoder, which works by creating a reconstructed se-
quence of CAN data and comparing it to the actual sequence
to detect anomalies. However, this method may underper-
form in detecting complex data fabrication attacks, where
an attacker could compromise sensors or electronic control
unit (ECU) and send fabricated, legitimate-looking data to
the CAN bus. Sun [32] introduced a novel IDS that in-
tegrates one-dimensional convolution, Bi-directional Long

Short-Term Memory networks (Bi-LSTM), and attention
mechanisms, demonstrating superior detection performance.
Nonetheless, the direct dropout strategy employed while
processing the hidden layers of sequences could result in a
significant loss of valuable detection information. Van Wyk
[35] proposed an anomaly detection approach that combines
deep learning convolutional neural networks with Kalman
filters. However, this method assumes that attacks occur
independently on single sensors, which may not detect more
complex, coordinated attack types.

Although the research by Wang et al. [38] mentioned
that multiple clients could utilize local data for collaborative
training to defend against federation attacks, the security of
the model itself and the communication cost during training
have not been fully considered. In the study presented in
[13], the authors proposed an intrusion detection model for
vehicular networks based on a CAN image encoding scheme.
While maintaining a lightweight design, the model also
achieved good detection performance. However, the study
did not fully consider the specific requirements of vehicular
devices. In [15], considering the privacy protection and
communication cost issues at the vehicle-side, the authors
proposed an intrusion detection framework that integrates
federated learning with transfer learning. Meanwhile, in [6],
the authors addressed the issue of slow model convergence
in CNN models due to improper setting of hyperparameters.
By optimizing the configuration of the CNN’s hyperparam-
eters, the robustness of the model was enhanced. In exist-
ing research on federated learning for intrusion detection,
the detection speed is often slow. The study in [42] broke
this limitation, achieving a response time of less than 3
milliseconds during the experimental testing phase, and the
model training process is transparent to vehicle operations,
not affecting normal driving behavior.
2.2. Intrusion Detection in External-Vehicle

Network of IoV
Intrusion detection for external-vehicle network, has also

garnered widespread attention in the research community.
Aloqaily [5] proposed an IDS for IoV utilizing a combi-
nation of DBN and DT algorithms. This approach demon-
strated high detection accuracy on the NSL-KDD dataset,
although it exhibited relatively high latency, especially when
the number of vehicle-to-vehicle nodes was limited.

Other research efforts have also centered on the develop-
ment of IDS for general networks, evaluating their methods
using benchmark datasets. For example, Injadat et al. [18]
introduced a novel multi-level optimization IDS based on
machine learning that features low model complexity and
requires less data for effective network attack detection.
The performance of the model was evaluated on the CIC-
IDS 2017 and UNSW-NB15 datasets. Kumar [19] combined
blockchain and deep learning technologies to address secu-
rity vulnerabilities between vehicles, enhancing the privacy,
transparency, verifiability, scalability, and integrity of IoV
data. However, the model neglected the potential communi-
cation cost incurred during the training process. Almutlaq
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Table 1
Comparison of Related Works on Intrusion Detection Model for In-Vehicle Network of IoV

Work Detection
Techniques Contribution

Emerging
Attack

(Zero-Day)

(V) Vehicle Level
(B) Behavior Analysis
(P) Privacy Protection

Strength Weakness

[4] Rule Set Utilizing a two-stage deep
learning model with rule
extraction techniques to
detect suspicious network
activities in IoV.

✘ ✘ B ✘ Detection results are cred-
ible, and the classification
of malicious activities is
effective.

Detection of new ma-
licious activities exhibits
significant fluctuations in
results, and requires man-
ual intervention for rule
configuration.

[23] LSTM Utilizing an LSTM-based
autoencoder to detect
anomalies in the CAN
network.

✓ ✘ B ✘ Do not need prior un-
derstanding of anomalous
activity semantic informa-
tion.

Insufficient in detecting
sophisticated data forgery
attacks.

[32]
CNN, Bi-LSTM,

Attention In-Vehicle network intru-
sion detection using CNN,
Bi-LSTM, and Attention
Mechanism models.

✓ ✘ ✘ ✘ Able to implement a low-
latency, generic intrusion
detection model without
the need for understand-
ing the encode knowledge
of in-vehicle networks.

Discarding the hidden lay-
ers in time series models
may result in a substantial
loss of valuable informa-
tion for detection.

[35]
1-dimension
Convolution Using CNN and Kalman

filtering with a 𝑥2-detector
model to detect anoma-
lous behaviors in the IoV.

✓ ✘ ✘ ✘ High detection rate. Unable to detect coordi-
nated attacks.

[38] CNN Utilizing spatiotemporal
features in sensor data
to detect isolated and
coordinated attacks in
the IoV.

✓ ✘ B ✘ Able to detect coordi-
nated isolated and at-
tacks.

Communication cost has
not been adequately con-
sidered.

[41]
Tree Based

Models A multi-layered hybrid in-
trusion detection system
based on features and
anomalous code.

✓ V ✘ ✘ Considering the IoV envi-
ronment, efficient detec-
tion results have been
achieved.

Relies on centralized
training, unable to
facilitate collaborative
training among vehicles.

[13] CNN Intrusion detection model
based on CAN image en-
coding scheme

✓ V ✘ ✘ Has good detection
performance, lightweight
model.

The model lacks privacy
protection.

[15]
MMD, FL,

Transfer Learning An intrusion detection
framework for CAN
networks based on the
integration of federated
learning and transfer
learning.

✘ ✘ ✘ P Select data highly rele-
vant to intrusion detec-
tion from source domains
similar to the target do-
main.

The model takes an exces-
sively long time for detec-
tion.

[6] Fl, CNN IoV intrusion detection
model based on CNN with
hyperparameter optimiza-
tion.

✓ V ✘ ✘ Optimized the learning
rate, dropout rate and
freeze layers hyperparam-
eters in CNN.

The vehicle-side model
lacks privacy protection
and is difficult to imple-
ment on vehicle-side de-
vices.

[42] FL, GNN Proposed a GNN-based
intrusion detection sys-
tem that can detect in-
vehicle network threats
within 3ms.

✓ ✘ B P Model training is trans-
parent to vehicles, with
fast detection speed.

The complexity of GNN-
based models is too high,
making data preparation
and model training very
difficult for attack detec-
tion.

LSTM: long-short term memory network; CNN: convolutional neural network; Rule Set: a set of rule algorithms extracted from
deep learning; Bi-LSTM: bi-directional long-short term memory networks; MMD: Maximum Mean Discrepancy; GNN: graph

neural network.

[4] employed interpretable neural networks for intrusion
detection in IoV to mitigate the overhead introduced by deep
learning. Nevertheless, the detection model failed to fully
consider its own security, potentially causing secondary
damage to the model in the detection of external IoV in-
trusions. Li [41] proposed a multi-tiered hybrid intrusion
detection system based on features and anomalous codes that
achieved efficient detection results and considered the IoV

environmental factors. Oseni et al. [27] presented an explain-
able neural network intrusion detection model based on the
Deep SHAP method [24]. This model facilitates a deeper
understanding of the details and principles of Internet of
Vehicles (IoV) security threats for network security experts
by extracting explainability rules from trained deep learning
models. However, when encountering new types of security
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Table 2
Comparison of Related Works on Intrusion Detection Model for External-Vehicle Network of IoV

Work Detection
Techniques Contribution

Emerging
Attack

(Zero-Day)

(V) Vehicle Level
(B) Behavior Analysis
(P) Privacy Protection

Strength Weakness

[5] DBN DT Detect anomalous com-
munication between vehi-
cles by integrating DBN
and DT algorithms.

✓ ✘ ✘ ✘ High accuracy and low
false positive rate.

Even with few vehicle-
to-vehicle nodes, the la-
tency remains relatively
high, and the algorithm
complexity is also high.

[18] Machine Learning Using training data sam-
pling techniques, a low-
latency intrusion detec-
tion framework based on
minimal training datasets
has been designed.

✓ ✘ ✘ ✘ The model has low
complexity and relies on
smaller datasets.

Traditional machine learn-
ing algorithms.

[19]
LSTM,

Blockchain By integrating blockchain
and deep learning
technologies, the
defensive capabilities
of vehicle systems against
security threats have been
enhanced.

✓ ✘ ✘ P While implementing at-
tack detection, it also
features proactive privacy
protection capabilities.

As data volume increases,
it becomes challenging to
implement a blockchain-
based detection model on
vehicle endpoints.

[41]
Tree Based

Models A multi-layered hybrid in-
trusion detection system
based on features and
anomalous code.

✓ V ✘ ✘ Considering the IoV envi-
ronment, efficient detec-
tion results have been
achieved.

Relies on centralized
training, unable to
facilitate collaborative
training among vehicles.

[27] Explainable DL Proposed an interpretable
neural network using the
Deep SHAP method to
detect security threats in
the IoV.

✘ ✘ ✘ ✘ Helps cybersecurity ex-
perts better understand
the details and principles
of IoV security threats.

For new security threats,
rules need to be re-
extracted.

[43] Fl, LSTM A privacy-preserving de-
tection model for IoV se-
curity threats based on
federated learning.

✓ ✘ ✘ ✘ Considering multi-level in-
formation fusion, includ-
ing data from the phys-
ical layer and application
layer.

In federated learning
training, the model on the
vehicle-side lacks privacy
protection.

[29] FL, Distillation Intrusion detection model
using federated distillation
algorithm based on FL
baseline.

✓ ✘ ✘ ✘ The model has a high ac-
curacy.

The distilled model was
not validated on the
vehicle-side.

[36] FL, fuzzy logic FL-based fuzzy logic with
IoV intrusion detection
model.

✘ ✘ ✘ ✘ Resolved the difficulty of
adoption under the con-
dition of non-IID vehicle
data.

The detection model uses
rule extraction, which re-
quires resetting the rules
for newly emerging at-
tacks.

[30] FL, EMs Proposed an intrusion
detection framework
based on federated
learning that aggregates
nodes with similar data
distributions for intrusion
detection.

✘ ✘ ✘ ✘ Able to adaptively reduce
the aggregation weights of
those below the standard
model.

The intrusion detection
model demonstrated un-
stable performance across
different datasets.

LSTM: long-short term memory network; Rule Set: a set of rule algorithms extracted from deep learning; DBN DT: deep Belief
Network with decision tree; Explainable DL: Explainable Deep Learning; EMs: evaluation metrics.

threats, the model requires the re-extraction of rules to adapt
to the new threat environment.

However, this method relied on centralized training,
which could lead to additional privacy leakage issues if
the model were intercepted. Ayodeji[27] proposed an in-
terpretable deep learning-based intrusion detection frame-
work that enhances the transparency and resilience of deep
learning-based IDS within IoV. Although it has improved the
efficiency of IDS detection to a certain extent, interpretable

deep learning still falls short in effectively uncovering po-
tential attacks.

Although research on IDS for IoV has made certain
strides, in our previous study [43], we adopted a federated
learning framework to train models for IoV attack detection,
effectively mitigating privacy leakage issues. Nonetheless,
this approach still has limitations. In practice, the model
[17] parameters exchanged between clients and the central
server could be susceptible to inference attacks. Rani [29]
employed a federated distillation-based intrusion detection
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model with federated learning baseline. The model achieved
high accuracy with low resource usage. However, no real
vehicle-side validation was done. [36] adopted a FL-based
IoV intrusion detection model, handling non-IID vehicle-
side data via sampling techniques. It used rule extraction,
requiring new rules when facing new threats. [30] proposed
a federated learning intrusion detection framework, aggre-
gating nodes with similar distributions and selecting opti-
mal local models, improving convergence. But experiments
exhibited instability across datasets.

In summary, Tables 1 and 2 comprehensively summarize
related in-vehicle and external-vehicle network intrusion
detection research, covering main contributions, detection
techniques, and strength/weakness. Moreover, we analyzed
whether these studies address key IoV intrusion detection
focuses like privacy protection and vehicle-side validation.
Despite extensive research, current focuses remain on model
construction, with gaps in communication cost, vehicle-side
privacy, and driver behaviors for federated learning-based
detection.

Therefore, an IDS suitable for detecting intrusions in
in-vehicle and external networks of IoV is needed. Our
proposed IDS outperforms existing IoV intrusion detection
research in several aspects. First, we process IoV communi-
cation data based on driver behaviors through temporal and
spatial dimensions, generating time-varying state matrices
to improve detection robustness. Next, our IDS adopts fed-
erated learning, training on public datasets of non-sensitive
features to mitigate private data leakage risks, and adding
appropriate noise perturbation on the client side. Finally,
compared to other ML/DL-based IDS, our proposed model
FDL-IDM demonstrates higher accuracy in improving de-
tection rates.

3. Threat Model
IoV face various types of attacks including denial-of-

service, deception, backdoor, man-in-the-middle, and forged
data injection. In particular, external-vehicle or in-vehicle
network communicating with the outside world are highly
vulnerable to attacks of varying degrees, as shown in Fig. 1.
For instance, packet interception can lead to privacy leaks,
and more seriously, the hijacking of driving control during
traveling poses major safety threats to drivers and other
road users. Fortunately, intrusion detection techniques can
isolate attacked networks or switch vehicles to a safe mode,
thereby mitigating risks in driving. Owing to the capacity
of processing large-scale heterogeneous data and learning
features, deep learning can detect different security threats
in IoV with high accuracy.

However, current deep learning based research focuses
more on constructing intrusion detection models, while ne-
glecting data processing. Yet the data contains substantial
information that models need. For example, in normal driv-
ing, driver operations exhibit continuity on the time axis.
In IoV, brake and throttle CAN bus signals alternate during
driving, while also transmitting steering signals. Addition-
ally, interactions between different target devices reflect

spatial characteristics. A new signal sender may correlate
with the brake, throttle and steering wheel. Such behavioral
information hides in the communication signals, requiring
specially designed algorithms aligned with behavior analysis
to uncover, so as to enhance model robustness.

Meanwhile, conventional machine learning requires up-
loading all raw data to the cloud for model training, incurring
enormous communication costs and serious privacy risks.
In federated learning, a central server coordinates clients
to train detection models via multiple rounds of global
iterations. In each round, the server randomly selects clients
to distribute the latest model, and clients train using local
private data before sending updated models back to the
server. However, federated learning still cannot guarantee
privacy, as advanced inference attacks can infer sensitive
training data from uploaded model parameters. For instance,
given inputs and the target model, membership inference
attacks can train an attack model to determine if a sample
was used to train the target model. Therefore, considering
the IoV context, privacy-preserving techniques need to be
proposed to enhance privacy protection capabilities.

4. Preliminaries
In this section, we present a comprehensive study of a

deep learning-based IDS for the IoV, then elaborate on the
threat model underpinning the IDS and offer an in-depth
exposition, along with the mathematical derivation, of the
pivotal techniques implemented within the detection model.
4.1. Federated Learning with RNN-Attention

Deep Learning Model
4.1.1. Federated Learning

Fig. 1 illustrates a federated learning-based intrusion
detection system that integrates a IoV with an external
network, consisting of a central server and multiple clients
𝑐1 ∼ 𝑐𝑛 (representing various vehicle-sides).

Within this system, each client 𝑐𝑖 (where 𝑖 ∈ [1, 𝑛])
independently possesses a set of data samples denoted as 𝐷𝑖.The primary objective of the federated learning detection
system is to employ the data samples from the clients to
train a machine learning model. Specifically for each client
𝑐𝑖, they independently hold a training dataset 𝐷𝑖 = (𝑋𝑖, 𝑌𝑖),with the model parameters denoted by 𝜃𝑖, where 𝑖 refers to
the i-th client. 𝑋𝑖 and 𝑌𝑖 correspond to the training data
and labels of the i-th client, respectively. The goal of the
federated learning detection system is to train an intrusion
detection model using the clients’ data samples, represented
by the function 𝑓𝜃 ∶ 𝑋𝑖 → 𝑌𝑖. The loss of the model on
the data samples 𝐷𝑖 is calculated using the loss function
𝐿𝑜𝑠𝑠(𝑓𝜃(𝑋𝑖), 𝑌𝑖).To protect data privacy, the federated learning detec-
tion system process involves multiple global iterations by
transmission differential privacy noise-perturbed gradients
between the clients and the server.

a) At the beginning of global iteration 𝑡, the server
distributes the latest model parameters (denoted as 𝜃𝑡) to
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a randomly selected subset of clients (vehicle-side) (repre-
sented by 𝑆𝑡);b) The selected client 𝑐𝑖 conducts local iterations using
its private dataset 𝐷𝑖 with the latest model parameters 𝜃𝑡 to
obtain the gradient 𝑔𝑖,𝑡, then adds Laplace noise Lap(Δ𝑠𝜖 ) to
generate the perturbed gradient 𝑎𝑖,𝑡, which is sent back to the
server;

c) The server aggregates the returned noisy gradients
into 𝜃𝑡+1 ← 𝜃𝑡 −

∑

𝑖∈𝑆𝑡
𝛼𝑖𝑎𝑖,𝑡, where 𝛼𝑖 is the weight for the

client 𝑖, with 𝛼𝑖 =
|𝐷𝑖|

|𝐷|

. After the aggregation process, the
server initiates a new round of global iteration with 𝜃𝑡+1.

The local independent dataset 𝐷𝑖 of the client integrates
communication data from both the external/in-vehicle of
IoV. These communication data are arranged in a temporal
sequence, and at any given time step 𝑡𝑟, a small batch of
input data is represented as 𝑥𝑡 ∈ 𝑅𝑚×𝑑 , where 𝑚 denotes the
number of samples in the training dataset, and 𝑑 represents
the dimensionality of features for each sample. Concurrently,
we set the activation function for the hidden layer as 𝜎.
4.1.2. RNN-Attention Deep Learning Model

In the Bi-LSTM, the forward and backward hidden states
at each time step are denoted as →

𝐻𝑡 ∈ 𝑅𝑚×ℎ and ←
𝐻𝑡 ∈ 𝑅𝑚×ℎ,

respectively, where ℎ indicates the number of computational
units in the hidden layer. The training update process for the
forward and backward hidden states is described as follows:

→
𝐻𝑡 = 𝜎(𝑥𝑡

→
𝑊𝑥ℎ +

→
𝐻𝑡−1

→
𝑊ℎℎ +

→
𝑏ℎ)

←
𝐻𝑡 = 𝜎(𝑥𝑡

←
𝑊𝑥ℎ +

←
𝐻𝑡+1

←
𝑊ℎℎ +

←
𝑏ℎ)

(1)

In this model, the forward weight parameters →
𝑊𝑥ℎ ∈

𝑅𝑑×ℎ, →
𝑊ℎℎ ∈ 𝑅ℎ×ℎ, and the backward weight parameters

←
𝑊𝑥ℎ ∈ 𝑅𝑑×ℎ, ←

𝑊ℎℎ ∈ 𝑅ℎ×ℎ, along with the forward bias
→
𝑏ℎ ∈ 𝑅1×ℎ, and the backward bias ←

𝑏ℎ ∈ 𝑅1×ℎ are all part of
the model’s weight parameters; these are updated globally
after local training is completed.

By concatenating the states of the forward and backward
hidden layers, we obtain the hidden state 𝐻𝑡 ∈ 𝑅𝑚×2ℎ to be
transmitted to the output layer. In a Bi-LSTM with multiple
hidden layers, this information serves as the input to the next
bidirectional layer, and this process occurs iteratively at each
time step. Moreover, at each time step in the computation,
there is an output layer that outputs the result of the time
step’s computation 𝑂𝑡 ∈ 𝑅𝑚×𝑞 , where 𝑞 represents the
number of units in the output layer.

𝑂𝑡 = 𝐻𝑡𝑊ℎ𝑞 + 𝑏𝑞 (2)
In this paper, the weight 𝑊ℎ𝑞 ∈ 𝑅2ℎ×𝑞 and bias 𝑏𝑞 ∈

𝑅1×𝑞 constitute the model parameters for the output layer. In
the application of bidirectional recurrent neural networks,
it is common practice not to directly merge the backward

←
𝐻𝑡 and forward →

𝐻𝑡 hidden states into 𝐻𝑡. Instead, they
participate independently in the output layer computation,
producing two separate outputs at each time step, while the
hidden layer also includes matrices for both forward and
backward states.

Inspired by the Sequence-to-Sequence (Seq2Seq) model
[33] and our research findings, we investigated that in exist-
ing studies, time-series models such as LSTM and Bi-LSTM
typically use the final hidden layer as the output result, while
outputs at each time step, 𝑂𝑡, are often discarded and not
included in the model training. To enhance the model’s
detection capabilities, this paper introduces an additive at-
tention mechanism that combines the output at each time
step 𝑂𝑡 with the corresponding hidden state 𝐻𝑡, computing
the attention distribution through addition. Specifically, the
additive attention is calculated through a fully connected
layer as 𝑉 𝑡𝑡𝑎𝑛ℎ(𝑊𝑞𝑄+𝑊𝑘𝐾). Here, the activation function
𝑡𝑎𝑛ℎ is used, where 𝑂𝑡 serves both as the query 𝑄 and the
key 𝐾 , while the hidden state 𝐻𝑡 acts as the value 𝑉 𝑡. This
computation method effectively integrates the output of each
time step with the hidden state information.

We found that the output at each time step contains a
wealth of information crucial for model detection. Discard-
ing these outputs can lead to significant model instability.
By effectively utilizing these time step outputs, we can
significantly enhance the model’s accuracy and robustness.
In the ablation study presented in Section 7.5, we validated
the significant contributions of the improved time-series
detection model and the attention mechanism implemented
herein.
4.2. Federated Learning Privacy Analysis

In this paper, it is assumed that the central server is
trusted, but there is a risk of external hackers infiltrating the
network to acquire unprocessed weight data of the vehicle’s
detection model. Although the personal data set 𝐷𝑖 of the
𝑖-th client is used only for local model training, the model
weight parameters 𝜃𝑖 need to be shared with the central
server. This may lead to the leakage of the client’s private
information, as demonstrated by model inversion attacks.
For instance, in [12], the authors demonstrated a method for
equation-solving model extraction attacks on linear models,
where seemingly legitimate queries are used to solve linear
equations and obtain the demonstrated model information.
In [22], the authors presented a model inversion attack that
could recover recognizable facial images solely from the
name of the model trainer and access to the machine learning
model weight parameters.

Although IoV intrusion detection based on federated
learning can reduce the risk of data leakage from the client
to some extent, during the process of weight aggregation
between the client and the central server, hackers can analyze
the global parameters 𝜃 and use reverse engineering on the
unencrypted weights 𝜃 to solve 𝑋𝑖 = 𝑓𝜃(𝑌𝑖)

′ for the client’s
local data 𝐷𝑖, thereby obtaining private information about
the vehicle, such as its location and unique identification
number.

Rui Chen: Preprint submitted to Elsevier Page 7 of 20



FDL-IDM

4.3. Local Differential Privacy
Local differential privacy enables the protection of data

privacy while maximizing query accuracy, typically by
adding randomized noise to prevent attackers from obtaining
the original data[10, 11]. During the distributed model
training process, the transmission of model weight data
may lead to privacy breaches[34, 22]. Local differential
privacy is applicable to distributed federated learning and
can achieve the protection of private data during the local
training process[39]. Unlike traditional centralized differ-
ential privacy, local differential privacy focuses on the
privacy protection during the data collection process, does
not require the assumption of a trusted third party, and can
also prevent model inversion attacks by adversaries with
prior knowledge.

Definition 1 Differential Privacy: Assume two datasets
𝐷 and 𝐷′ that differ by a Hamming distance of 1, and
consider a randomized algorithm 𝐴 whose outputs follow
a certain distribution.

𝑃𝑟[𝐴[𝐷] ∈ 𝑆] ≤ 𝑒𝜀𝑃𝑟[𝐴[𝐷
′
∈ 𝑆]] (3)

Where 𝜀 > 0 is the differential privacy budget; the
smaller the privacy budget, the greater the noise added,
resulting in a higher level of privacy protection. 𝐷′ can
be understood as being generated by perturbing the dataset
𝐷. For any given datum in the perturbed dataset 𝐷′ , the
probability ratio 𝑃𝑟 compared to any datum in the original
dataset 𝐷 is less than 𝑒𝜀.

Definition 2 Global Sensitivity: The motivation for
studying this issue arises from our inability to restrict the
types of queries users make on a dataset. When the query
is about the number of individuals, the difference between
adjacent datasets is small (differing by only 1), so adding
a small amount of noise can obfuscate the results between
the two; however, when querying something like individ-
ual salaries, where the differences between data points are
significant, even a slight change can make the disparities in
the data evident. Thus, adding only a small amount of noise
is clearly insufficient to meet the application requirements.
Therefore, the design of a differential privacy mechanism
is closely related to the nature of the queries. Given that
the absence of even a single record in a dataset can have a
certain impact on the query results, it is necessary to quantify
the maximum extent of this impact, such as through the
computation of a sensitivity measure denoted by Δ𝑠 [39].

Δ𝑠 = max
∀𝜃,𝐷

||𝑠(𝐷) − 𝑠(𝐷
′
)||1 (4)

The term Δ𝑠 represents the quantified value of sensitiv-
ity, which characterizes the maximum change in the output
𝑠 due to the alteration of a single record. Upon determining
the sensitivity, it is necessary to add noise drawn from a
Laplace distribution with a mean of zero, in accordance with
the sensitivity of the adjacent datasets 𝐷 and 𝐷′ .

Definition 3 Laplace Noise Perturbation: Given a
dataset 𝐷 and query parameter 𝜃, a Laplace mechanism

satisfying 𝜖-DP would perturb the query result 𝑎𝐿 by adding
noise as follows:

𝑎𝐿(𝑤, 𝜖) = 𝑔(𝑤,𝐷) +𝑍 (5)
Where𝑍 represents the noise generated from the Laplace

distribution, with the probability density function 𝑃𝑟(𝑍) =
𝜖

2Δ𝑠 exp
(

− 𝜖|𝑍|

Δ𝑠

)

, which can also be denoted as 𝑍 ∼

Lap
(

Δ𝑠
𝜖

)

. According to Definition 1, the consumption of
the privacy budget is closely related to the act of responding
to queries.
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Figure 2: Intrusion detection model framework incorporating
a data processing algorithm based on user behavior and a
temporal sequence model incorporating attention mechanisms.

5. Proposed Method
In this section, we first introduce the system framework

of the intrusion detection model, and then propose a dataset
processing algorithm that combines local differential pri-
vacy. We analyze the application of the intrusion detection
federated learning model and its relationship with the perfor-
mance of local differential privacy. Furthermore, we prove
that our proposed intrusion detection model can satisfy the
requirements of differential privacy by adding appropriate
noise perturbation on the client side.
5.1. Intrusion Detection System Framework

To address the intrusion detection problem in both
external-vehicle networks and in-vehicle networks described
in Section 3 Threat Model, we have devised a novel federated
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Table 3
Key Notations and Abbreviations

Notations or
Abbreviations Description

𝑐𝑖 The i-th client.
𝐷𝑖 The i-th client’s local data.
𝜃 Universal weights representing the

model, with 𝜃𝑖 denoting the model
weights of the i-th client.

𝑓𝜃 An intrusion detection model with
weights denoted by 𝜃.

m the number of dimension contained in
𝐷𝑖.

h hidden layer.
→

𝐻𝑡 and
←

𝐻𝑡 The forward and backward of the
bidirectional temporal sequence hidden
layer.

𝑡 Rounds for global model aggregation in
federated learning.

𝑋𝑔
𝑖 The data grouped within the i-th

client.
𝑟𝑖,𝑥 In the i-th client, a particular feature

value 𝑥 within the private data falls
within the range [1, 𝑚].

𝑠𝑖 In the i-th client, structured data is in
the form of a state matrix that varies
over time.

ITS Intelligent Transportation Systems
IDS intrusion detection system
IoV Internet of Vehicles
CAN controller area network
ECU electronic control unit

deep learning intrusion detection model (FDL-IDM) based
on differential privacy. This model employs a comprehensive
data set processing algorithm that considers both temporal
and spatial dimensions of homogeneity, reducing communi-
cation cost per iteration during training and ensuring model
accuracy without compromising data privacy.

From Algorithm 1, in the designed data processing al-
gorithm, different clients 𝑐𝑖, 𝑖 ∈ [1, 𝑛] each possess their
independent dataset 𝐷𝑖. Considering the homogeneity of the
data, we first group the communication message datasets by
sender address, starting from the spatial dimension. Subse-
quently, from the temporal dimension, we slice the grouped
data according to the temporal sequence to form structured
data with temporal states. This method is more effective
in capturing the characteristics of data across time and
space, providing richer information for subsequent intrusion
detection.

From Fig. 4.3, during model training and detection, we
combine the output of the temporal sequence model with
the hidden layers using an attention mechanism to obtain
vectors that encode vehicle behavior patterns. Then we apply
a residual multi-layer perceptron for a nonlinear transfor-
mation to obtain the final attack detection results. Due to
the mobility of vehicles, centralized server training would

require sending model parameters to the in-vehicle terminals
and uploading local training data to the central server. How-
ever, this data transmission process is susceptible to privacy
risks due to unreliable communications, potentially leading
to training data leakage. Moreover, extensive data exchanges
would strain the IoV communication resources. To avoid
these issues, we have designed a federated learning intrusion
detection model training framework as shown in Fig. 1.
Training data is distributed to local processors in different
vehicles, creating a distributed training process. During local
training, we apply a local differential privacy algorithm
to process gradient updates, and the server aggregates the
model weights uploaded by the vehicles. Even if attackers
access the model weights, they cannot reverse-engineer the
original parameters, ensuring the model’s privacy and secu-
rity.

Thus, intrusion detection in IoV involves two aspects: a
data set processing algorithm that integrates the homogene-
ity property and the federated learning intrusion detection
model based on differential privacy. By adopting a local
differential privacy algorithm and a distributed training ap-
proach for the federated learning intrusion detection model,
we can effectively detect intrusions while ensuring privacy
and security.
5.2. Data Preprocessing
5.2.1. The Homogeneity Property

ECU ECU

ECU ECU attack
id1 id0

id2id3
BA

Figure 3: A: The homogeneity property of the attacker on the
External-Vehicle Network. B: The homogeneity property of the
attacker on the In-Vehicle Network.

As shown in Fig. 4.3, this study leverages the principle
of homogeneity to uncover potential attack behaviors. In
computer caching, there exists a general algorithm: after a
user accesses a memory region, it is likely that the same
region will be accessed again in the near future[21]. Inspired
by the principles of computer caching, this research has
found through data analysis that after accessing an address,
users typically access the same address again within a close
temporal proximity. This phenomenon has been defined as
the homogeneity property.

More specifically, we have deeply considered both tem-
poral and spatial dimensions. During normal driving, a
driver’s actions exhibit continuity over a temporal sequence.
For example, in the context of IoV, the CAN bus messages
for braking and throttle will alternately change as the vehicle
moves, and steering operations will also be transmitted. In
addition, the interactive changes between different target
devices reflect spatial characteristics. For instance, a new
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message’s sender might be associated with three devices: the
brakes, throttle, and steering wheel.

Therefore, within a certain time frame, the vehicle’s
operations related to starting, braking, throttle, and steering
will alternate, demonstrating local continuity in both tem-
poral and spatial. If commands related to vehicle doors or
windows being opened and closed occur frequently during
this period, it generally indicates an anomaly, which is a key
indicator for intrusion detection.

In cases where attackers are more sophisticated, they
might manipulate ECU devices only during specific times
and forge messages, such as the sender identity and times-
tamps (i.e., controlling the timing of message sending).
However, no matter how the timing of the messages sent
is altered, there will be intervals between messages, and
currently, there is no research capable of precisely char-
acterizing the distribution of normal message intervals for
different vehicle states. Deep learning, on the other hand,
can learn this distribution by combining heterogeneous data
and adjust timely with the continuous input of new data.

Furthermore, in the messages sent, besides the source
address and timestamp, there are additional dimensional
features, such as the angle of the steering wheel and the
intensity of the throttle. These angles and intensities change
over time, equivalent to a state matrix that varies with
time. Deep learning can quickly learn the potential associ-
ations between these states through training data. Therefore,
against such intelligent attacks, our approach can provide
effective protection.

For joint attacks with the ability to intelligently mod-
ify messages, our data set processing algorithm combines
homogeneity property through grouping and segmentation
operations to form a message state matrix. These vehicle
state matrices help to reveal the potential multidimensional
data correlations between each ECU and others. This method
also considers the case of multiple sensors, enhancing the
robustness of the detection system against combined attacks.

As shown in Fig. 3A, in external-vehicle network attacks,
attackers may perform different attacks on the same address
to achieve their goals, often making multiple attempts, and
the temporal sequence series is unordered. Even if attack-
ers deliberately disguise their temporal sequence, they will
expose themselves as attackers in other features. In con-
trast, normal users accessing the vehicle usually maintain
a contextual relationship and will not arbitrarily choose
to send messages from different vehicles multiple times.
Similarly, in the in-vehicle network illustrated in Fig. 3B,
the homogeneity property is better reflected. For example,
when driving a car, users often call the brake and accelera-
tion ECUs, rather than frequently opening the sunroof and
windows in a short period of time.
5.2.2. Vehicle-side Training Data Grouping and

Slicing
Based on the analysis of homogeneity and described in

Algorithm 1, we processed the dataset by considering the
spatial and temporal dimensions reflected by the sender of

the sensor messages and the sequence of message transmis-
sion. Specifically, for the features and labels {𝑋𝑖, 𝑌𝑖} in the
local dataset𝐷𝑖 of the vehicle side, we group them according
to the identifier of the sender. Given the aforementioned
homogeneity, grouping can be done by the unique identifier
of the sender; for example, in external-vehicle network data,
the source IP address can be used as the basis for grouping,
while in the in-vehicle network dataset, the CAN ID can
serve as the grouping marker. We select the x-th feature
𝑋𝑖,𝑥 from 𝐷𝑖 as the grouping flag. Through this method, we
obtain the dataset 𝑋𝑔

𝑖 grouped by the sender’s identity, and
the grouped data exhibits certain spatial properties. Further-
more, we need to consider these spatially characterized data
from the temporal dimension to obtain structured data in the
form of a state matrix that varies over time and is suitable
for training.

In order to make the spatially characterized data suitable
for training the detection model 𝑓𝜃 , we first normalize the
feature values 𝑟𝑖,𝑥 in the data 𝑋𝑔

𝑖 by employing the fol-
lowing formula before proceeding to slice the data: 𝑟𝑖,𝑥 =
𝑟𝑖,𝑥−𝑟𝑖,𝑚𝑖𝑛
𝑟𝑖,𝑚𝑎𝑥−𝑟𝑖,𝑚𝑖𝑛

. Subsequently, based on the identifiers of the
senders, we store data with the same grouping identifier in
the same file. This approach not only effectively reduces
memory consumption but also facilitates the monitoring of
groupings during algorithm execution to promptly detect any
errors that may arise during data processing.

Next, we slice the data to construct a collection of
datasets with temporal sequence states {𝑠𝑖1, 𝑠𝑖2, ..., 𝑠𝑖𝑐}, where
𝑐 represents the predefined time steps, thus obtaining struc-
tured data in the form of state matrices that vary over time.

During the slicing operation, it is imperative to ensure
the continuity and order of the dataset’s temporal sequence
are preserved. If the volume of data in 𝑋𝑔

𝑖 exceeds the
time step 𝑐, it should be truncated; if the remaining part
is larger than time step 𝑐, this truncation process should
be repeated; if the remaining data volume is less than 𝑐, it
should be discarded. The purpose of this processing method
is to obtain structured behavioral data that exhibits the state
characteristics of different devices over time, providing pre-
cise input data for subsequent temporal sequence analysis.
5.3. Intrusion Detection Model with Local

Differential Privacy
Our proposed intrusion detection model is well-adapted

for scenarios in which vehicles communicate sensitive data
to a potentially untrustworthy central server. Fig. 1 illustrates
our intrusion detection framework, which incorporates a
novel strategy for preserving privacy: local model gradients
perturbation guided by a local differential privacy algorithm.
This method represents an advancement over the conven-
tional Federated Averaging (FedAvg) model, as introduced
by McMahan[25], enhancing the protection against data
privacy breaches on the vehicle-side.

In our approach, when local model weights are trans-
mitted to the central server, they are obfuscated through
the addition of noise adhering to a Laplace distribution—a
mechanism known for its efficacy in differential privacy.
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Algorithm 1 Dataset Processing Based on Homogeneity
Property
Require: Local dataset 𝐷𝑖 = {𝑋𝑖, 𝑌𝑖} on the vehicle side
Ensure: Structured data {𝑠𝑖1, 𝑠

𝑖
2, ..., 𝑠

𝑖
𝑐} with the same time

step 𝑐
1: Group the dataset 𝐷𝑖 according to the homogeneity

property based on identifier of the sender to obtain the
grouped data 𝑋𝑔

𝑖
2: Normalize the feature value 𝑟𝑖,𝑥 in 𝑋𝑔

𝑖 using the
formula 𝑟𝑖,𝑥 = (𝑟𝑖,𝑥 − 𝑟𝑖,𝑚𝑖𝑛)∕(𝑟𝑖,𝑚𝑎𝑥 − 𝑟𝑖,𝑚𝑖𝑛)

3: Store the data with the same grouping criterion 𝑋𝑔
𝑖in a single file

4: Slice the data in 𝑋𝑔
𝑖 into {𝑠𝑖1, 𝑠

𝑖
2, ..., 𝑠

𝑖
𝑐} with

the same time step 𝑐, while maintaining the temporal
sequence order of the datasets

5: if the volume of 𝑋𝑔
𝑖 exceeds the time step 𝑐 then

6: continue to slice the remaining data
7: end if
8: if the volume is less than 𝑐 then
9: discard the data

10: end if
11: return Output the structured data {𝑠𝑖1, 𝑠

𝑖
2, ..., 𝑠

𝑖
𝑐} with

the same time step 𝑐

This ensures that, even in the unfortunate event of intercep-
tion by malicious entities, the original model weights remain
inscrutable, effectively mitigating the risk of back-tracing
and subsequent privacy compromises from the vehicle’s
data.

In subsequent sections, we delve into the intricacies of
each component comprising our intrusion detection system,
providing a comprehensive understanding of its operation
and privacy-preserving capabilities.
5.3.1. Intrusion Detection Model Design

After processing data as described in Section 5.2.1 and
5.2.2, we obtain structured training data {𝑠𝑖1, 𝑠

𝑖
2, ..., 𝑠

𝑖
𝑐}. Uti-

lizing the bidirectional temporal sequence model introduced
in Section 4.1, we take each feature 𝑟𝑖,𝑥, 𝑥 ∈ [1, 𝑚] from
𝐷𝑖 and combine them with the previous time step’s hidden
states ←

𝐻𝑡−1 and →
𝐻𝑡−1 as inputs to the Bidirectional Gated

Recurrent Unit (Bi-GRU) network. At each time step, the
network generates a hidden state ←

𝐻𝑡 and →
𝐻𝑡, along with an

output 𝑂𝑡 for each time step.
In contrast with traditional Seq2Seq models, we apply

additive attention to integrate the output results 𝑂𝑡 at each
time step with the hidden states ←

𝐻𝑡 and →
𝐻𝑡, using the additive

attention mechanism proposed in Section 4.1 to calculate
𝑆 𝑖, 𝑆𝑖 ∈ ℝ𝑛×ℎ, where 𝑛 is the size of the time slice and ℎ
is the size of the hidden layer.

The final detection result is computed as:

𝑅𝑒𝑖 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑅𝑒𝐿𝑢(𝑆 𝑖𝑊𝑠 + 𝑆 𝑖
𝑏))

+𝑅𝑒𝐿𝑢(𝑆 𝑖𝑊𝑠 + 𝑆 𝑖
𝑏)

(6)

And the loss function is 𝐿𝑜𝑠𝑠(𝑓𝜃(𝑋𝑖), 𝑌𝑖). Here, the
𝐷𝑟𝑜𝑝𝑜𝑢𝑡 function serves as a regularization technique in
neural networks to prevent overfitting, as described in the
literature. The term 𝑅𝑒𝑖 denotes the model’s final detection
result, where 𝑅𝑒𝑖 ∈ ℝ𝑏×2 and 𝑏 represents the batch size
used in model training. The weight matrix 𝑊 ∈ ℝΩ×2

corresponds to 𝑆 𝑖 ∈ ℝℎ×Ω, with ℎ indicating the size of the
hidden layer andΩ the output layer size of the multilayer per-
ceptron. For different vehicle nodes 𝐶𝑖, the model iteratively
updates the weight parameters until the loss is minimized.
5.3.2. Model Weight Parameters Noise Perturbation

During the gradient update process of the intrusion de-
tection model, we incorporate Laplace random noise into the
optimization of model parameters using gradient descent,
ensuring the entire process adheres to differential privacy.
To demonstrate that the random perturbation 𝑧 applied to
gradient descent complies with the differential privacy re-
quirements proposed in the Section 4.3, we select a random
function 𝐴(𝐷). This function is applied to both the original
dataset 𝐷 and a differentially private version 𝐷′ to produce
random values and to calculate the probability distribution.
We also define𝐴(𝐷) = 𝑓 (𝐷)+𝑥 as the noise-added function
for the dataset.

𝑃𝑟[𝐴(𝐷) = 𝑡]
𝑃𝑟[𝐴(𝐷′ ) = 𝑡]

=
𝑃𝑟[𝐴(𝐷) + 𝑥 = 𝑡]
𝑃𝑟[𝐴(𝐷′ ) + 𝑥 = 𝑡]

=
𝑃𝑟[𝑥 = 𝑡 − 𝐴(𝐷)]
𝑃𝑟[𝑥 = 𝑡 − 𝐴(𝐷′ )]

=
1
2𝛽 𝑒𝑥𝑝[−

|𝑡−𝑓 (𝑑)|
𝛽 ]

1
2𝛽 𝑒𝑥𝑝[−

|𝑡−𝑓 (𝑑′ )|
𝛽 ]

= 𝑒𝑥𝑝[
|𝑡 − 𝑓 (𝑑′ )| − |𝑡 − 𝑓 (𝑑)|

𝛽
]

≤ 𝑒𝑥𝑝[
|𝑓 (𝑑) − 𝑓 (𝑑′ )|

𝛽
]

≤ 𝑒𝑥𝑝(Δ𝑠
𝛽
)

(7)

By substituting the Laplace distribution function with
mean 𝜇 = 0 into Eq. 7, we obtain the inequality ≤
exp(Δ𝑓∕𝛽) using the triangle inequality |𝑎| − |𝑏| ≤ |𝑎 − 𝑏|.
Our proof reveals the relationship between the sensitivity
Δ𝑓 and the random noise 𝛽, which is 𝛽 > Δ𝑓∕𝜖. Therefore,
by controlling the ratio of sensitivityΔ𝑓 and 𝛽 to be less than
𝜖, we can ensure the definition of differential privacy. Hence,
in the proof of Eq. 7, we demonstrate that incorporating local
differential privacy in the training process of the federated
learning intrusion detection model can satisfy the definition
of differential privacy.

Here is our proposed Algorithm 2 for local differential
privacy federated learning model training. To avoid the
problem of the learning rate 𝛼 being too large in the local
model training process, which may prevent the model from
converging, we multiply the learning rate in each local
training by 0.95 of the previous learning rate 𝛼𝑡−1. At the
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Algorithm 2 Incorporating LDP in the training process of
the federated learning intrusion detection model algorithm

1: Initializes the global weight parameters as 𝜃0
2: Initializes clients and communication rounds and learn-

ing rate
3: for t from 1 to communication rounds do
4: local clients ← the server randomly selects

some clients
5: for client i in local clients do
6: weight parameters, learning rate← client i

LocalTrain(learning rate, 𝜃𝑡)
7: sum weight parameters ← cumulative weight pa-

rameters
8: end for
9: 𝜃𝑡 ← average of sum parameters

10: learning rate ← learning rate × 0.95
11: end for
12: LocalTrain(learning rate, 𝜃𝑡):
13: new 𝜃𝑡 ← Update the local model weight parameters

according to the local data ,learning rate and 𝜃𝑡
14: new 𝜃𝑡 with noise ← Adding noise perturbations to the

weighting parameters using LDP

Table 4
Datasets Details for Intrusion Detection Model Data

Dataset
Total

Number Attack Normal

UNSW-NB 15[26] 2,540,047 321,283 2,218,764

CAN-intrusion
datasets [20] 4,613,909 2,244,041 2,369,868

CIC-IDS-2017[31] 2,830,773 2,273,097 557,676

same time, to ensure the efficiency of the algorithm, we only
calculate the gradient for a batch of samples in the dataset
𝐷𝑖 during each iteration.

6. Experimentation
In this section, we evaluate the effectiveness of our

proposed intrusion detection model using three real-world
datasets.
6.1. Datasets

We utilized the CAN-Intrusion-datasets [20] which records
automobile hacking data, as well as the UNSW-NB 15
[26] and CIC-IDS-2017 [31] datasets which document the
communications between OBUs and RSUs. These datasets
are used to validate our research since they cover the
latest attack data and serve as ideal resources for detecting
contemporary threats. Three datasets were employed in our
evaluations: UNSW-NB 15, CAN-Intrusion-datasets, and
CIC-IDS-2017. Table 4 provides the detailed parameters
of the datasets. To make the data more comprehensive and
balanced, we collected and shuffled the data randomly after
feature extraction for each client, aiming for a 1:1 ratio

between normal and attack samples as much as possible.
These datasets contain various types of attacks, covering
normal and attack records of both CAN and external-
network traffic, obtained by simulating automobile hacking
attacks and NIDS testing platforms.

For experimental validation of intrusion detection in the
in-vehicle network, the dataset used in this study is the CAN-
intrusion-dataset [20] proposed in 2018 . This dataset was
generated based on CAN communication traffic recorded
through the OBD-II port of vehicles during CAN attacks.
The features of the dataset mainly include timestamps, CAN
ID, data length code (DLC), and the 8-byte data fields
(DATA[0]-DATA[7]) in CAN frames. To facilitate effective
model learning, we devised a processing algorithm for the
DATA fields as shown in Algorithm 3, which converted the
raw data fields into numeric features suitable for collabora-
tive model training.

In the experimental validation of external network IDS,
public IoV benchmark datasets have significant deficien-
cies due to issues like popularity, privacy protection, and
commercialization. On the other hand, WLAN and cellular
networks are the mainstream technologies for IoV and com-
mercial vehicle communications. Therefore, attack meth-
ods against conventional computer networks can be con-
sidered to bear similarities with intrusions against external-
vehicle networks. In light of this situation, many research
works [8, 5, 19, 41] have adopted universal network security
datasets to develop IDS for external-vehicle networks, in-
cluding KDD-99, NSL-KDD, Kyoto 2006+, UNSW-NB 15,
and CIC-IDS-2017. Among these network security datasets,
UNSW-NB 15[26] and CIC-IDS-2017[20] are regarded as
the most representative datasets in the current external-
vehicle network IDS field, owing to not only their techni-
cal advancement, but also the larger numbers of features,
instances, and network attack types they contain compared
to other datasets. In the validation process of our proposed
external/in-vehicle network intrusion detection algorithm,
we specifically chose the network communication data in the
UNSW-NB 15 and CIC-IDS-2017 datasets to simulate the
complex external-vehicle network environment. In this way,
the performance of our algorithm in real-world IoV contexts
can be evaluated more effectively.

All network communication messages are stored in CSV
files along with timestamps. These datasets consist of di-
verse attack types including DoS, reconnaissance and in-
jection attacks, gear spoofing, RPM spoofing, and fuzzing
attacks. In our investigation, we recognized that any form
of attack, once successfully executed within the vehicular
network, could lead to grave consequences for both the
driver and the vehicle. Consequently, in this paper, we treat
all types of attacks as generic aggressive actions without
distinguishing them into specific categories.
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Figure 4: Utility Comparison of detection model with different epsilon on three datasets

Algorithm 3 The field of DATA processing algorithm for
generating numerical features
Input: data, an array of CAN bus data with a length of 8

bytes
Output: data label, an array of normalized CAN bus fea-

tures with a length of 8 bytes
1: can data bytes ← an array of CAN bus data obtained

from data[-1] after removing any leading or trailing
white space and then splitting the string using space as
the delimiter

2: if the length of can data bytes is greater than 8 then
3: set can data bytes to the first 8 bytes of can data bytes
4: end if
5: if the length of can data bytes is equal to 1 and can data

bytes[0] is an empty string then
6: set can data bytes[0] to ’FF’ and set 𝑑𝑙𝑐 to 1
7: end if
8: for can byte in can data bytes do
9: append the corresponding normalized value (i.e.,

int(can byte, 16) / 255) to data label
10: end for
11: for 𝑖 in the range [𝑑𝑙𝑐, 8] do
12: append 1.0 to data label to ensure that the length of

data label is always 8 bytes
13: end for
14: for 𝑖 in the range [𝑑𝑙𝑐, 8] do
15: append 1.0 to data label to ensure that the length of

data label is always 8 bytes
16: end for
17: return data label

6.2. Evaluation Metrics
To evaluate the performance of our models, we use terms

such as True Positive (TP), True Negative (TN), False Pos-
itive (FP), and False Negative (FN). We employ precision,
recall, and F1 score.

Accuracy is the metric that quantifies the ratio of cor-
rectly predicted observations to the total observations in the
dataset.

𝐴𝑐𝑐 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(8)

Precision measures the proportion of correctly predicted
positive samples to all samples predicted as positive.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑃 ) = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(9)

Similarly, recall is the proportion of correctly predicted
positive samples to all actual positive samples.

𝑅𝑒𝑐𝑎𝑙𝑙(𝑅) = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(10)

The F1 score is a harmonic mean of precision and recall.

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ⋅ 𝑃 ⋅ 𝑅
𝑃 + 𝑅

(11)

Since precision and recall affect and constrain each other,
we use the F1 score to balance these estimates and evaluate
the model’s overall performance with a single value.

B. Vehicle-level TestingA. Federated Learning Training

802.11ac

Raspberry Pi 4B

RTX 3060Ti

Figure 5: Experimental Setup

6.3. Experimental Setup
As shown in Fig. 5, the algorithms proposed in this paper

were implemented and executed on the Ubuntu/Linux 18.04
operating system. The code was written in Python 3.10, and
we utilized the PyTorch 1.13 deep learning framework’s API
to construct a deep neural network for the IDS detection
model. From Fig. 5A, model training was conducted on a
platform equipped with an Nvidia RTX 3060Ti graphics
card, which also featured a 2.9 GHz octa-core Intel Core
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Table 5
Federated Learning for Training Model Parameters and Hyper-
parameters

Round number 150
Client number 100
Number of clients selected for
a round

10

Local clients batch size 10
Local clients epoch 5
Learning rate 0.015
Learning rate scheduler 0.95
optimization function Adam
loss function Cross Entropy

Loss

i7 10700F CPU and 32GB RAM. From Fig. 5B, vehicle-
level model testing was carried out on a Raspberry Pi 4B
embedded device, which is equipped with a 64-bit dual-
core Cortex-A72 CPU and 4GB of memory. Each model
was trained on the GPU using the Adam optimizer and
underwent 150 rounds of federated learning.

Each federated learning client performed 10 rounds of
local training. The initial learning rate of the model was set
to 0.015, and after each training round, the learning rate
of each client was multiplied by 0.95 to decay the rate.
Detailed model parameters and hyperparameter configura-
tions are provided in Table 5. For the privacy budget 𝜀, 𝜀 ∈
[1, 2, 4, 8, 12, 16, 20], we consider a range of values, where
lower values of privacy budget 𝜀 provide stronger privacy
protection for vehicles.
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Figure 6: Communication cost in Federated Learning and
Central Learning with different data set

7. Evaluation and Discussion
7.1. Privacy Analysis

In Section 5.3.2, we theoretically derived the Laplace
noise mechanism perturbation in intrusion detection models.
In this section, we demonstrate the performance of the noise
distribution Laplace perturbation on various metrics of the
proposed detection model. We use the Laplace mechanism
to train 70% of the dataset for training and 30% for testing,

while the privacy budget for local differential privacy is [1,
2, 4, 8, 12, 16, 20].

From in Fig. 4, this paper demonstrates the detection
metrics of the proposed detection model across different
privacy budget 𝜀 values and various datasets. When we
set the privacy budget 𝜀 of our model to 4, we found that
both the detection performance and privacy are effectively
protected. If the privacy budget 𝜀 is set below 4, although the
privacy protection effect is optimal, the model’s detection
metrics significantly decline. On the other hand, when the
privacy budget 𝜀 exceeds 4, the detection metrics of the
model tend to stabilize, indicating that the effectiveness
of privacy protection becomes negligible. Therefore, based
on the experimental results, we determine that the optimal
privacy budget 𝜀 for our model is 4.
7.2. Noise distribution evaluation

As shown in Fig. 7, we present the pattern of loss
values during the entire process of training 100 local models.
Although we observe a decreasing trend in the loss values,
they do not consistently decrease. This is because the local
models are randomly selected to participate in the training,
and the learning rate of the local models decreases with
the increase of their participation times. Therefore, the loss
values exhibit periodic increases. From the figure, we can
observe a decrease in loss values compared to the previous
period.
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Figure 7: Loss value of local detection model involved in
training and F1-score of 150 Fed-training communication
rounds on three datasets

During the local training process, we used three publicly
available datasets and set the differential privacy budget 𝜀 to
20. As shown in Fig. 7, we found that the F1-score of the
federated learning becomes stable and no longer fluctuates
after more than 60 rounds. The detailed model detection
metrics of the three datasets are shown in Table 6. Therefore,
we conclude that the proposed model meets our design goals:
it can protect the weight parameters of the local models while
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Table 6
Ablation Study of Modules on Detection Model

CAN-IDS UNSW-NB CIC-IDS
Modules F1 ACC Prec Rec F1 ACC Prec Rec F1 ACC Prec Rec

Bi-LSTM w/o att,
w/ slice 0.9516 0.9538 0.9340 0.9698 0.9558 0.9741 0.9838 0.9294 0.9448 0.9643 0.9704 0.9204

Bi-LSTM w/o att,
w/o slice 0.9308 0.9294 0.9091 0.9535 0.9295 0.9603 0.9388 0.9204 0.9380 0.9631 0.9464 0.9300

LSTM w/o att,
w/o slice 0.8682 0.8790 0.8168 0.9265 0.8834 0.9259 0.9182 0.8512 0.8724 0.9423 0.9642 0.8806

Bi-GRU w/ att,
w/ slice 0.9749 0.9775 0.9652 0.9848 0.9551 0.9700 0.9730 0.9378 0.9641 0.9739 0.9797 0.9490

Bi-LSTM w/ att
and slice 0.9851 0.9856 0.9726 0.9979 0.9751 0.9649 0.9768 0.9733 0.9789 0.9694 0.9780 0.9798

having the ability to train detection models through federated
learning, and the model protection utility is not reduced.
7.3. Results of Performance Comparison Between

Federated and Centralized Model
In the IoV environment, the local clients (vehicle-side)

communicate wirelessly through 5G or 802.11p technology
to participate in the training process of the federated learning
model. The communication cost of federated learning model
training is the communication traffic cost of uploading or
downloading model parameters when the local vehicle in-
teracts with the RSU throughout the training process. In
contrast, the communication cost of centralized training is
the cost associated with uploading all local data to the central
server during vehicle operation (eg, window opening com-
mand, brake command). We compare these communication
costs in terms of the data size exchanged between the local
vehicle and the RSU.

Fig. 6 shows that during central training, the communi-
cation cost is dependent on the size of the dataset that the
client is trained on. If the dataset is large, it leads to high
communication cost consumption. In contrast, distributed
federated learning training is not impacted by dataset size,
as only the model weights are uploaded each time. In our
experiments, we set the upload cost for a single round of
federated training to be the sum of all local model sizes and
the size of the dataset attributes that need to be uploaded.
The download cost is then set to the sum of the global model
sizes obtained by all local vehicle entities.

We recorded the total size of data exchanged between all
vehicle entities and the RSU during the entire communica-
tion cycle (150 rounds) for the federated learning communi-
cation cost calculation method 𝑐𝑜𝑠𝑡 =

∑𝑟𝑜𝑢𝑛𝑑
𝑖 𝑊𝑠(𝑖), where

𝑟𝑜𝑢𝑛𝑑 is the communication cycle, and 𝑊𝑠 is the model
weights bit size. On the other hand, the communication cost
of centralized training is set to the total size of the datasets.
This is because central training needs to obtain local data
of all vehicles through the RSU and the central server, and
these two datasets store all local data of vehicles.

Our experiments show that the total amount of data
communicated in federated training is significantly smaller
than that in central training methods.
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Figure 8: Model training process for experimental validation
of the homogeneity property. A: LSTM without slice and
addictive-attention, B:LSTM with slice without addictive-
attention, C: LSTM with slice and addictive-attention, D:Bi-
LSTM with slice and addictive-attention.

7.4. The homogeneity property validation
experiment

Fig. 8 depicts the results of four experiments designed
to validate the effectiveness of the homogeneity property
of user behavior as proposed in our study. Experiment A
(Fig. 8A) involves capturing 64 records at fixed intervals
without applying the homogeneity property for grouping or
slicing the dataset. To assess the impact of potential temporal
fluctuations and to examine the necessity of the attention
mechanism, control experiments were also performed with-
out the attention component in both Experiment A (Fig. 8A)
and Experiment B (Fig. 8B).

While Experiment B (Fig. 8B) incorporated the dataset
processed with grouped binning according to the homogene-
ity property, it was evident that Experiment A’s (Fig. 8A)
training exhibited considerable fluctuations and struggled
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with model convergence, leading to instability. In stark con-
trast, Experiments C and D (Fig. 8C and Fig. 8D), which uti-
lized the grouped slice dataset processing algorithm aligned
with the homogeneity property outlined in this paper and
implemented a revised temporal model, demonstrated stable
convergence after 200 training iterations with no significant
jitter as seen in Experiment A (Fig. 8A). From these ob-
servations, it is inferred that the homogeneity property we
introduced significantly bolsters the training stability and
fosters more effective model convergence.
7.5. Ablation Study of Modules

In order to verify whether the model modules proposed
in this paper are necessary or redundant, this study primar-
ily evaluates the effectiveness of the time-series algorithm
based on the time attention mechanism in Section4.1.2,
the behavioral data processing algorithm based on the Ho-
mogeneity Property in Section 5.2.1 and 5.2.2, and other
time-series models through a series of ablation studies. To
eliminate potential experimental errors, we systematically
removed different components and conducted controlled
experiments, repeating each experiment five times to reduce
the impact of environmental variations and selecting the
median accuracy as the result.

As shown in Table 6, we replaced or discarded different
modules of the model proposed in this paper to test their
effectiveness on three datasets in application detection tasks.
For instance, in the first row of Table 6, after grouping
and slicing the datasets using the data processing algorithm
proposed in this article, we utilized Bi-LSTM for time series
recognition while removing the attention module. In con-
trast, in the fifth row, we used the same time series model but
retained the time attention mechanism, demonstrating that
the detection metrics of the model on different datasets were
superior to those without the attention mechanism.

On the other hand, Fig. 8 reveals significant instability
in the training process when the Homogeneity Property is
not applied, supporting the non-redundancy of incorporating
data aggregation and processing algorithms, thereby enhanc-
ing the model’s effectiveness and reducing the possibility
of component redundancy. Additionally, both Bi-GRU and
Bi-LSTM exhibited comparable performance across all met-
rics, highlighting the robustness of bidirectional time series
models in capturing contextual features of user behavior.
It was also observed that without the synergistic effect of
the attention mechanism, unidirectional models proved to
be insufficient, thus highlighting the superiority of bidirec-
tional models. Considering these observations, Bi-LSTM
has emerged as an outstanding time series model, surpassing
similar models in detection effectiveness.

Furthermore, the third row of the table opts not to use
Bi-LSTM but instead uses the LSTM time series model, and
does not employ the the Homogeneity Property for grouping
the datasets. We found that without using Bi-LSTM and
the homogeneity property binning algorithm, the model’s
detection results in terms of F1-score significantly dropped.
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Figure 9: Confusion Matrix for the Three Test Datasets

7.6. Comparisons With The State of The Art
Models

In the field of IoV intrusion detection, this study selected
two categories encompassing six representative state-of-
the-art research works as benchmarks for evaluation. We
conducted a comprehensive comparison and analysis of our
FDL-IDM against these existing algorithms to highlight the
contributions of our research.

1) Within IoV intrusion detection research, only FedMix
[43] accounted for privacy and communication costs, yet
it had deficiencies in model upload and server-side model
aggregation strategies, leading to reduced accuracy. Other
studies focused on enhancing detection accuracy, neglecting
model privacy and communication challenges. This paper,
set against the backdrop of real-world IoV scenarios, reduces
the risk of model reverse engineering attacks by perturbing
the parameters of the uploaded models.

2) Ayodeji[27] and Almutlaq[4] utilized explainable
neural networks for intrusion detection, achieving high
accuracy and detection efficiency in literature, particularly
suitable for resource-constrained IoV environments. Our
experiments revealed that explainable neural networks cur-
rently struggle with learning complex heterogeneous data,
and potential attacks are not detected effectively.

3) Wang[38] processed data through behavioral anal-
ysis and transformed it into spatiotemporal state matrices
using Convolutional Neural Networks (CNNs), effectively
defending against joint attacks with impressive detection
performance. However, the detection model used is not yet
optimized; adding noise as described in the literature would
lead to significant performance fluctuations. In contrast,
our improved temporal sequence model effectively avoids
accuracy degradation due to privacy protection measures, an
issue also present in[32, 41].

4) The studies in[32, 41], while using deep learning for
intrusion detection and recognizing attacks, did not suffi-
ciently address the communication burden and privacy leak-
age on the client (vehicle-side). Our FDL-IDM enhanced
these strategies with federated learning incorporating differ-
ential privacy perturbations, demonstrating reduced commu-
nication costs compared to centralized training, as shown in
Fig. 6, with the benefit being independent of dataset size.

In Table 8, we compared the performance differences be-
tween the proposed FDL-IDM model and other state-of-the-
art models trained on public datasets. Although FDL-IDM
did not rank first in accuracy and F1 score, it still performed
at a leading level with a score of 0.9851 and confusion matrix
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Table 7
Performance Comparison with State-of-The-Art Models

Model F1 Rec Prec Acc
Sun [32] 0.805-0.967 0.857-0.971 0.859-0.962 -

Almutlaq[4] 0.922-0.9632 0.9142-0.9746 0.8942-0.9832 -

Wang [38] 0.8580-0.9713 - 0.9705-0.9780 0.8720-0.9715

Ayodeji[27] 0.9883 0.9915 0.9910 0.9915

Yang [41] 0.99895 - - -

Zhao [43] 0.913 0.851 0.985 -

Proposed Model 0.9751-0.9851 0.9733-0.9979 0.9726-0.9780 0.9649-0.9856

Table 8
Vehicle-Level Testing on Different Datasets

CAN-IDS UNSW-NB CIC-IDS
Num F1 ACC Prec Rec F1 ACC Prec Rec F1 ACC Prec Rec Avg(ms)

1 0.9826 0.9834 0.9777 0.9876 0.9762 0.9828 0.9867 0.9658 0.9582 0.9754 0.9844 0.9335 6-8
2 0.9829 0.9846 0.9698 0.9964 0.9785 0.9856 0.9955 0.9620 0.9608 0.9772 0.9854 0.9373 5-7
3 0.9719 0.9878 0.9565 0.9878 0.9669 0.9845 0.9462 0.9886 0.9761 0.9882 0.9827 0.9695 6-9

in Fig. 9. Additionally, by analyzing the data in Table 1, we
found that current leading IoV intrusion detection models
generally lack measures to protect model security, with few
models being trained using federated learning optimized for
IoV environments combined with differential privacy. Given
these results, we conclude that the FDL-IDM model is highly
suitable for IoV intrusion detection tasks and can effectively
perform its functions.
7.7. Vehicle-Level Model Evaluation

The proposed FDL-IDM trained model was tested on the
onboard computer Raspberry Pi 4B to evaluate its practical
usability in IoV environments. Furthermore, the generaliza-
tion performance of the model can be further assessed by
applying it to a test set that was not used for training.

The experimental results on the test set are shown in
Table 8, as indicated, the F1 scores of the proposed FDL-
IDM on three datasets ranged between 0.9669 and 0.9829. In
addition, the confusion matrices for evaluating the proposed
method on different dataset test sets are shown in Fig. 9.
The primary reason for achieving high accuracy in CAN
intrusion detection is the clear distinction between the attack
patterns and normal patterns in the DATA payload of the
CAN-IDS.

In Fig. 9B and Fig. 9C, we observed that the model
also achieved a low false-positive rate in external-vehicle
network intrusion detection, mainly due to training on a large
dataset. The use of more data samples has enhanced the
generalization ability of the proposed method. Additionally,
the data processing algorithm was designed with driving
behavior characteristics in mind, filtering out irrelevant and
misleading features that could cause overfitting, thus further
improving the model’s generalization performance.

On the other hand, to ensure that the proposed FDL-
IDM can be deployed in real vehicle systems and meet the

real-time requirements of vehicle safety services, the alarm
generation time for each data packet transmitted over the IoV
should not exceed 10 milliseconds [2]. As shown in the table,
experiments were conducted on three different datasets, and
the results showed that the detection time for each packet
was maintained within 10 milliseconds, thus fully meeting
the real-time requirements.

Practical Application Discussion and Future
Work

In this section, we explore the multifunctionality of the
model when deployed in IoV systems. As depicted in Fig.
5, we present the workflow for training our proposed detec-
tion model and testing it on vehicle-level devices. Before
the model workflow begins, the central server utilizes its
computational advantage to initialize training of the model.
After the central server initializes the model, it is delivered
to vehicle-side devices, where local data is used for further
training and testing. The trained model is then sent back to
the central server after being perturbed using differential pri-
vacy techniques, where it is aggregated into a global model.
Subsequently, individual vehicles download and decrypt this
aggregated model for integration into their onboard systems.

Once deployed in the in-vehicle network environment,
the model can help detect potential cyber threats in real-time
from the various ECUs connected to the CAN bus, such as
rpm, power windows, and brake indicators. When deployed
in the external vehicle network environment, the model helps
monitor network threats from external communications like
DSRC, WiFi, and Bluetooth. The entire process reflects
the complex co-training simulation environment between
vehicles and the central server. Our proposed solution aims
to be deployed in a way that meets the practical needs of
modern IoV systems.
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In the experiments of Section 7.3, compared to tradi-
tional training on the central server, transferring training data
between vehicle-side and central server led to communica-
tion cost directly correlating with training dataset size. As
shown in Fig. 6, communication cost reached 314MB when
using the CAN-IDS dataset. However, the federated learning
training method proposed in this paper has overhead between
vehicle-side and central server independent of the central
server, with stable communication cost around 54MB. In
addition, we evaluated the performance of our proposed
model at the vehicle level, through a series of real tests and
extensive simulations, aiming to validate the performance
of our detection model in terms of real-time operation and
efficacy. In Section 7.7, we selected test data from the three
datasets that was not involved in training, and conducted
three experiments on each dataset. Table 7 shows the detec-
tion metrics and inference times of FDL-IDM on different
datasets, with F1 scores controlled around 97% and inference
times within 10 milliseconds. These results demonstrate the
stability and real-time performance of our proposed model
when facing different scenarios.

However, the vehicle-level experiments in this paper
were based on the Raspberry Pi 4B embedded device. With
the development of the automotive industry, the computing
power of most current vehicles has exceeded that of the
device used in the experiments. Nevertheless, there are still
many vehicles whose computing power has not reached the
level of the experimental device. Therefore, after deploying
the model proposed in this paper, the model’s response time
may not meet the strict requirements of real-time applica-
tions. To protect data privacy during training, differential
privacy techniques based on the Laplace mechanism were
used to perturb the uploaded gradients. The current differen-
tial privacy strategy does not perform bounded processing of
the noise, which sometimes causes excessive noise leading
to decreased model accuracy, thus slowing down training
convergence and prolonging training time.

As a direction for future work, we aim to enhance
our framework for more effective identification of cyber
threats in IoV networks. By reviewing the latest research
literature[3, 9], we find that federated learning still has sig-
nificant research gaps in handling large-scale data and data
poisoning attacks, with relatively scarce related research.
To this end, we plan improvements in two aspects: first,
during federated learning training, we intend to sparsify
the uploaded model gradients, i.e., upload only gradients
of significant importance, while the central server focuses
on aggregating these key gradients. This method can not
only effectively reduce bandwidth usage and privacy budget
consumption, but also adapt to vehicles with weaker com-
puting power. Secondly, in the implementation of differential
privacy perturbation, we plan to introduce bounded noise to
avoid strongly interfering noise, thereby accelerating model
convergence and enhancing the robustness of the detection
model. Through implementing these strategies, we expect
to improve the applicability of federated learning systems
in IoV cybersecurity, demonstrating higher efficiency and

security in real-world deployments. Meanwhile, these im-
provements also aim to provide new solutions and research
methodologies for researchers and academia in the same
field.

Conclusion
In this paper, we propose a federated deep learning algo-

rithm that uses behavioral analysis, distributed training, and
Laplace noise mechanism perturbations to enhance the accu-
racy and privacy of the detection model. Our method groups
data based on the source address and uses an improved tem-
poral sequence model with additive attention mechanisms to
enhance behavioral features. Federated learning training and
Laplace perturbations during local training processes ensure
privacy and improve the accuracy of the model.

Although this study has tested the proposed model on
vehicle-level embedded devices, the data utilized still comes
from public datasets, which diverges somewhat from real-
world scenarios. In our future work, we plan to implement
sparsification of the model gradients uploaded to the central
server by only transmitting gradients that are significantly
important. This approach will allow the central server to fo-
cus on the aggregation of these key gradients. Additionally,
we intend to apply boundary constraints to the noise, in order
to avoid the generation of highly disruptive noise. These
measures are expected to accelerate the convergence speed
of the model and enhance the robustness of the detection
model.
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