
Firm-Vehicle: Trusted Communication Enabled
Instruction Embedding Model

for Resource-Constrained VANET
Environments

Rui Chen(B) , Waleed Younas, and Jing Zhao

School of Software Technology, Dalian University of Technology, Dalian 116024,
Liaoning, China

chenrui_dut@163.com, 12017026@mail.dlut.edu.cn,

zhaoj9988@dlut.edu.cn

Abstract. Instruction embedding is an essential technique in firmware security
research and serves as a fundamental component in many vulnerability detec-
tion and security analysis methods for VANET. Instruction embedding maps the
semantic information of instructions into fixed-dimensional vectors. However, the
current instruction embedding approaches often neglect the operational require-
ments of resource-constrained environments typical of VANET. Moreover, the
dependency on third-party disassembly tools for the extraction of instruction call
graphs presents challenges related to runtime environment, thereby complicat-
ing the feasible application of instruction embedding techniques. To address these
limitations, we propose a novel cross-architecture firmware instruction embedding
model called Firm-Vehicle, specifically tailored for resource-constrained environ-
ments in VANET. Primarily, we devise a lightweight algorithm for extracting
instruction call graphs, eliminating the reliance on third-party disassembly tools
and improving the efficiency of call graphs extraction, thereby enhancing the
instruction embedding model. Through evaluations and comparison with other
approaches, Firm-Vehicle not only reduces the required time for instruction call
graphs extraction but also enhances the stability of the instruction embedding
model, enabling secure and efficient operation within the VANET environment.

Keywords: Instruction Embedding · VANET · Resource Constrained · Model
Compression · Model Distillation

1 Introduction

The Vehicular Ad-hoc Networks (VANET) is a heterogeneous network vehicle-side and
roadside unit (RSU) networks, and humanmobile communication networks. It leverages
real-time interconnection andperception amongvehicles, roads, and the cloud to enhance
vehicle safety and intelligence on the road, while providing various information services

W. Younas and J. Zhao—Contributing authors.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
D.-S. Huang et al. (Eds.): ICIC 2024, LNCS 14869, pp. 391–402, 2024.
https://doi.org/10.1007/978-981-97-5603-2_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-5603-2_32&domain=pdf
http://orcid.org/0009-0007-2324-0030
https://doi.org/10.1007/978-981-97-5603-2_32

392 R. Chen et al.

to users, thereby improving the driving and driving experience. However, the security
of VANET faces severe challenges. Security issues in the VANET not only result in
financial losses for drivers but can also expose threats to the safety of others, even
endangering lives [26]. Numerous security issues were identified in VANET devices,
such as car door lock vulnerabilities, unrestricted access to vehicle cameras, and exposure
of vehicle location privacy. Statistical data reveals that 80% of VANET devices adopt
weak password algorithms, 70% of VANET communications are unencrypted, and 90%
of VANET firmware have security vulnerabilities [1, 7].

Research on firmware vulnerability detection has become a top priority for VANET
security [11, 14, 17, 21, 25]. Among them, instruction embedding is a key technique
that maps instructions to fixed dimensional vectors. By designing and implementing fast
and effective firmware instruction embedding models for VANET devices, it can help
security researchers quickly discover security issues in VANET devices, and also help
VANET manufacturers quickly locate code design defects. This will better promote the
development of theVANET industry, and research on instruction embedding for VANET
device firmware is of great significance.

However, current instruction embedding research primarily employs large models
and deploys instruction embedding services on central servers, neglecting research into
resource-constrained scenarios [14, 21, 25]. As a result, existing instruction embed-
ding solutions fail to provide effective services for resource-constrained VANET envi-
ronments, where firmware detection is urgently needed. At the same time, in current
instruction embedding research, third-party disassembly tools are commonly used to
generate instruction call graphs fromdisassembled code, in order to providemore seman-
tic information about the instructions to the model [14, 25]. Moreover, using third-party
instruction call graphs extraction tools raises issues of authorization and environment
deployment. For example, IDApro [8] is a powerful but expensive tool with high require-
ments for deployment environments, such as inability to deploy on Linux, which greatly
limits the progress of instruction embedding related tasks.

Therefore, to enable efficient execution of instruction embedding models in the
resource-constrained VANET environments, we proposes a novel cross-architecture
instruction embedding model Firm-Vehicle tailored for VANET communication sce-
narios [20, 26]. Specially, we first devise a lightweight instruction call graph extraction
algorithm based on jump instructions’ context, avoiding authorization and deployment
environment issues during model inference. Meanwhile, efficient deployment and exe-
cution of instruction embedding models in VANET faces some challenges. Then, we
leverage model distillation techniques to compress the complex instruction embedding
model that has been trained on a central server. The objective of this process is to effi-
ciently transfer the rich information from the teachermodel to the student model, thereby
constructing a lightweight model that is suitable for deployment in resource-constrained
VANET environments. This approach ensures minimal performance degradation while
achieving effective compression of the model structure, and it meets the operational
requirements within resource-limited VANETs. Finally, through the above designs and
evaluations, our approach not only accelerates the instruction call graph generation
process, but also enhances the stability of instruction embedding models for efficient
execution in resource-constrained environments.

Firm-Vehicle: Trusted Communication Enabled Instruction Embedding Model 393

Above all, we are the major contribution of this work is as follows:

• We propose Firm-Vehicle, a novel cross-architecture firmware instruction embedding
model specifically designed for resource-constrainedVANETcommunication scenar-
ios. Additionally, in order to eliminate reliance on third-party disassembly tools, we
devise a lightweight instruction call graph extraction algorithm, that significantly
speeds up the generation of instruction call graphs, thereby facilitating the creation
of high-quality instruction embeddings.

• Wepropose amodel compression approach based on knowledge distillation to stream-
line complex instruction embeddingmodels throughmodel distillation, reducing them
to lightweight models suitable for deployment in resource-constrained VANET envi-
ronments, thereby ensuring the effective operation of the embedding models within
the VANETs.

• We evaluate the performance of our model by conducting downstream tasks related to
command embedding and compare it against existing approaches in terms of security
and performance. Experimental results demonstrate that Firm-Vehicle not only accel-
erates the generation of command invocation relationships in resource-constrained
VANET environments but also enhances the stability of the command embedding
model, enabling safe and efficient operation.

2 Related Work

Recent studies indicate that representational learning surpasses traditional heuristic-
based methods in instruction embedding tasks like binary similarity detection [24, 25],
function name prediction, and function boundary identification. This success hinges on
learning vector representations, or embeddings, of assembly instructions at various gran-
ularities, individual instructions, basic blocks, or entire functions, which are crucial for
applications such as instruction search and firmware vulnerability detection [14]. How-
ever, compressing thesemodels to reduce storage needs has resulted in poor performance
in embedding assembly instructions and limited usability in VANET environments
[15, 18, 23].

Earlier research focused on developing and fine-tuning pre-trained models to gen-
erate such embeddings for both direct application and downstream tasks [4, 14, 25].
These methods are divided into unsupervised and supervised learning categories. Ini-
tially, many studies used unsupervised learning to generate binary code embeddings
without needing labeled data, merely requiring the disassembly of binary files and the
construction of control flow graphs. Examples include DeepBindiff [6] and Asm2Vec
[5], which utilize Word2Vec techniques [16, 28].

Many modern software applications support multiple operating systems and instruc-
tion set architectures (ISAs), implementing the same functionalities but interacting with
different OS interfaces and compiling binaries for various ISAs like ARMv7, ARMv8,
and MIPS. This heterogeneity presents challenges for instruction embedding. Conse-
quently, there is significant interest in platform-agnostic instruction embedding tech-
niques [21, 25], aimed at applications such as vulnerability search and binary similarity
detection. These techniques enable seamless transfer of analysis work across different
platforms; for instance, a single error signature can be applied to binaries from vari-
ous ISAs. Approaches vary from abstracting binaries into OS/ISA-agnostic assembly

394 R. Chen et al.

instructions to using Siamese models like Gemini [24] and InnerEye [27], which learn
direct similarities between binaries compiled for different platforms.

TheHintonmodel distillation techniquemainly focuses on distilling the output of the
teacher model’s prediction layer [10]. However, engineers often only consider the input-
output correlation of the teacher model, potentially leading to issues like overfitting due
to neglect of the model’s internal structure. This is particularly problematic with large
Transformer-based models, where distilling only output predictions might not capture
the extensive semantic and syntactic knowledge in the intermediate layers. To overcome
this, researchers have introduced a hierarchical distillation method that aligns the hidden
representations of the student and teacher models across all layers, facilitating a more
comprehensive transfer of knowledge from intermediate layers [3].

Upon comparison with existing works, we have identified the need for an efficient
instruction embedding model for resource-constrained VANETs. To address this, we
devised an algorithm to generate required call graphs without third-party tools. We also
employ model distillation to refine complex embedding models into a lightweight model
tailored for VANETs, ensuring effectiveness under constraints. The model details will
be elaborated upon.

3 Problem Formulation

Firmware security has become a crucial challenge in the VANET domain, with instruc-
tion embedding being a key research focus. Current instruction embedding models
face two main limitations: heavy reliance on third-party decompilation tools for gen-
erating assembly instructions and their relationships, and designs that do not suit
resource-constrained environments due to their size.

Addressing these issues, our study introduces a lightweight algorithm for extracting
instruction call relationships and a novel instruction embeddingmodel. Initially deployed
on resource-rich roadside units, the model is adapted for VANETs through knowledge
distillation. This technique transfers knowledge from complex “teacher” models to more
manageable “student”models, enhancing their predictive capabilities and generalization.
We utilize model distillation on central servers to effectively compress these models,
optimizing them for the limited resources and high processing demands of VANETs,
while striving to maintain performance.

4 Proposed Method

This section introduces the Firm-Vehicle instruction embedding model, based on the
Hugging Face pre-trained BERT model (bert-base-uncased) with an integrated graph
structure extraction algorithm, detailed in Fig. 1A. Knowledge distillation techniques
transfer expertise from a large-scale to a lightweight model, ensuring efficient operation
and accurate detection in resource-constrained VANET environments. Thus, the model
meets VANETs’ stringent real-time performance and resource efficiency requirements,
effectively performing code similarity analysis tasks even with limited computational
resources.

Firm-Vehicle: Trusted Communication Enabled Instruction Embedding Model 395

movq %r di , %r bx

mova bs q $. L0, %r di

movb $0, %a l

c a l l q pr i nt f

movq %r bx, - 80(%r bp)

...

x86 Assembly

l dr r 7, [r 11, #12]

l dr r 8 , [r 11, #8]

l dr r 0 , . LCPI 0_0

bl pr i nt f

s t r r 6 , [r 11, #- 32]...

ARM Assembly

External Blocks

Core Blocks Context

printf

.LCPI0_0

External Blocks

Core Blocks Context

%rdi

printf

1

1

1
2

2

2
3

3 1 2 3

34

4

ARM control and data flow sequence

1 1
2 2 3

3

4

1 2 3 1 2 34

x86 control and data flow sequence Model Distillation and Training

ldr r7, [r11, #12] ... movq %rdi, %rbx ...

Call Graphs Structure Training Sentence Processing

Next Sentence Prediction

Call Graphs Generate

Is Equivalent

ARM blocks sequence X86 blocks sequence

Is Equivalent

ARM blocks sequence X86 blocks sequence

... .

.

.

.

.

.

L
ay

er
x

1
2

L
ay

er
x

1
2

......
......

x
1

x
2

x
3

x
n

k
n
o
w

led
g
e

Distill Transfer

Knowledge Transfer

Teacher Model Student Model

A B

[CLS] [SEP] movq %rdi %rbx [SEP]Input ldr r7 r11 #8, , ,[]

[CLS] [SEP] movq %rdi %rbx [SEP]ldr r7 r11 #8, , ,[]

[CLS] [SEP] movq %rdi %rbx [SEP]Input ldr r7 r11 #8, , ,[]

Fig. 1. A: The Firm-Vehicle system extracts call graphs between assembly instructions to train
a language model using next sentence prediction, enabling cross-architecture instruction embed-
dings. B: For model compression, a lightweight Bi-LSTM student network is trained using outputs
from a BERT-based teacher model through distillation technique.

4.1 Assembly Instruction Call Graphs Extraction Algorithm

In existing binary code similarity research, instruction call graphs extraction often relies
on third-party disassembly tools. However, these third-party tools capture excessive
information. In instruction call graph analysis, toomany dependent call graphs are added,
including the assembly code of auxiliary source programs. The increase of such useless
information results in higher time costs for model training. On the other hand, with
the presence of many irrelevant instructions, the model cannot accurately identify the
semantics of actual executed assembly. Also, the use of third-party toolsmay involve fees
and licenses, cannot be combinedwithmodel data processing due to runtime environment
issues.

Therefore, in this section, we designed an assembly instruction call graphs extrac-
tion algorithm, mainly for analyzing assembly instruction call graphs information and
reducing the complexity of instruction call graphs dependent on information. As shown
in Algorithm 1, this algorithm can also remove pseudo instructions from compilers.
Compared with third-party tools, the instruction call graphs extraction of this algorithm
is not limited by environment and fees, and can be flexibly deployed on RSU devices to
more effectively assist downstream tasks such as detecting firmware vulnerabilities in
vehicles.

From Fig. 1A, in the processing after obtaining each line of assembly instruction,
first skip empty lines and instructions with specific labels. In assembly, .Ltmp and .LPC
labels do not indicate block semantics and should be ignored directly. For non-empty
lines containing new labels, extract the label name and add it to a dictionary as the key,
creating a corresponding empty list as the value. For instruction lines starting with a
tab or space, remove leading and trailing whitespace based on architecture type after
processing. For valid instructions, remove comments and add the instruction to the list for
the corresponding label after processing. This allows classifying and storing assembly
instructions by labels for convenient subsequent processing or analysis.

396 R. Chen et al.

Algorithm 1 Vehicle Firm Assembly Instruction Call Graphs Extraction Algorithm
1:for line in assembly code do
2: Ignore empty line and instruction containing .Ltmp and LPC
3: if line does not start with a tab or space then
4: label =get the part before ”:” from line
5: while blocks contains label do
6: append ”1” to label
7: end while
8: create an empty list in blocks with the key as label
9: else if label is not empty then
10: instruction = remove leading and trailing whitespaces from line
11: if instruction does not start with ”#” or ”@” then
12: if arch is ’x86’ then
13: remove the annotation from instruction using regular expression and
add it to blocks[label]
14: else if arch is ’arm’ then
15: remove the annotation from instruction using regular expression and
add it to blocks[label]
16: end if
17: end if
18: end if
19: end for

Due to the large number of vocabularies (e.g. constants, strings) in binary code that
cannot be covered in the vocabulary, the OOV (out-of-vocabulary) problem often occurs,
requiring processing of unlabeled words. For constant data, replace with [data] tag; for
string data, replace with [str] tag; for jump addresses, replace with [addr] tag; for called
function names, replace with [function] tag; replace the rest unknowns with [unk] tag.
By substituting low-frequency vocabularies, the OOV problem encountered by NLP
models in processing assembly language can be addressed.

To determine the contextual relationships in the call graph structure between different
assembly blocks in ARM assembly, the ldr instruction is used to store and load memory,
and LCPI0_0 contains the offset.We can find the assembly content startingwith ldr LCPI
through the regex ldr\sr0, \s(\.LCPI\d∗_\d∗)bl\sprintf ; to obtain the offset repre-
sented by LCPI. For example, if the offset of LCPI0_0 is found, we can extract the con-
tent contained in the asciz instruction pointed to by the offset, which represents the execu-
tion context order of the block. Similarly, for x86 assembly, we adopt the same method,
only replacing the regex movabsq\s$(\.L\d∗), \%rdi;movb\%al; callq\sprintf ; for
finding calls to other blocks with.

4.2 Model Distillation

From Fig. 1B, this paper denotes the output vector given by the teacher model Modelt
just before the Softmax function in the output layer as zt , where yt

∧ = Softmax(zt)
represents the inferred probability distribution of input sample classes based on the
model. Similarly, the output vector of the student model is denoted as zs, with the
predicted probability distribution being ys

∧

. Therefore, the definition of the loss function

Firm-Vehicle: Trusted Communication Enabled Instruction Embedding Model 397

used during the training process of the student model deployed at node k,Modelks , is as
follows.

Ls = λLsl + (1 − λ)Lkd
Lsl = H (max(ys), yr)

Lkd = τ 2KL(ys, Sk(yt))

The term Lsl represents the loss generated by the discrepancy between the predicted
result ys

∧

of the student model during regular training and the actual result yr , where H ()

denotes the cross-entropy function. The term Lkd is the loss function resulting from the
difference between the outputs of the teacher model and the student model, where τ

is the distillation temperature hyperparameter, which should be adjusted and optimized
according to training effectiveness, with ys = Softmax(zs/τ) and yt = Softmax(zt/τ);
here, KL() signifies the Kullback-Leibler divergence function, and Sk() is the mapping
function based on the prior traffic distribution at node k.

Firstly, the teacher model in this study adopts a BERT-based architecture with spe-
cific parameter settings: the number of layers (Layers) is 12, the number of heads in the
multi-head attention mechanism (Head) is 12, and the dimension of the hidden layer
(Hidden_dimension) is 128. During the training process of the Firm-Vehicle teacher
model,we adopted fundamental trainingmethods including theMaskedLanguageModel
(MLM). By applying the next sentence prediction task, the model is capable of recogniz-
ing connections between code blocks of different architectures; concurrently, themodel’s
next instruction prediction works in conjunction with the Masked Language Model to
aid in a deeper understanding of the contextual relationships between assembly instruc-
tions. Utilizing the Masked Language Model, the model can perform predictive infer-
ence on masked tokens during training, thereby more accurately grasping the semantic
connotations of assembly instructions.

When building the student model, we use the last layer output of the teacher model to
guide its training, effectively distilling the teacher’s knowledge. This not only transfers
the teacher’s information to the student model but also improves its ability to generalize
on new data. This distillation method maximizes the potential of the teacher model,
allowing the student model to reach or come close to the teacher’s performance in a
more compact form. The student model, a 12-layer Bi-LSTM with a hidden layer size
of 64, is fine-tuned for next sentence prediction by training on paired input code block
sets, similar to the teacher model. These pairs, half from adjacent blocks within the same
document and half from different documents, use the teacher’s outputs as training labels
to predict the sequence of the code blocks, enhancing the model’s ability to generalize
across different contexts.

5 Experimental Results and Analysis

In this section, we focus on evaluating different instruction embedding studies and com-
munication schemes for model deployment environments. For this purpose, we designed
and implemented a comprehensive evaluation framework to evaluate Firm-Vehicle and
baseline methods. The evaluation can be divided into three categories: model metric
evaluation, communication cost evaluation and communication security evaluation for

398 R. Chen et al.

the model deployment environment. In the rest of this section, we first introduce our
evaluation framework and experimental setup, then discuss the results.

35.8 44.6

389

65

0.724 0.725
0.834 0.841 0.881 0.921 0.932

LSTM Bi-LST
M

Firm-Vehic
le W/O Compress

Firm-Vehic
le

0
50

100

150
200
250
300

350
400

C

0 5 10 15 20 25 30 35 40 45

300

400

500

A

Training Loss
Testing Loss

one
-hot

Inst
ruct

ion2
Vec

Word2
Vec

Asm
2Ve

c
Gem

ini

Palm
Tree

Firm
-Veh

icle
0.0

0.2

0.4

0.6

0.8

1.0

B

Fig. 2. A: Training and Test Loss. B: AUC values of Gemini. C: Storage space of trained model.

5.1 Experiment Setup

In this study, we evaluated three binary analysis tasks: Gemini [24] for binary code sim-
ilarity detection, DeepVSA [9] for value set analysis, EKLAVYA [2] for function type
signature inference, and PalmTree [14] for cross-architecture analysis through instruc-
tion embedding. We used the original implementations for experiments conducted in
consistent datasets and environments. Additionally, we proposed a trusted communica-
tion scheme between vehicle-side and RSU units in VANET environments, to be verified
using the NS3 [19] simulator.

We also assessed the effectiveness of our assembly instruction call graph extraction
algorithm by comparing two versions of our Firm-Vehicle model: one with the call graph
algorithm and one without (Firm-Vehicle-W/o-G).

For our dataset, we used the MIRROR paper’s public dataset, which includes source
code from five notable C/C++ open-source projects: Binutils 2.30, Coreutils 8.29, FFm-
peg n3.2.13, OpenSSL 1.1.1b, and Redis 5.0.5. We compiled these into x86 and ARM
assembly using the LLVM compiler.

Our experiments were performed on an Ubuntu 18.04 workstation with an Intel
Xeon E5-2683 V4 CPU, two GeForce RTX 3090 GPUs, and 124GB memory. During
the pretraining phase of Firm-Vehicle, we used 128,000 sample pairs from the ARM and
x86 datasets and trained for 40 epochs on a sentence semantic equivalence task using
the bert-base-uncased model from Hugging Face [4]. From Fig. 2A, after 40 epochs,
training converged on the task of establishing equivalence between x86 and ARM basic
blocks. We will use this trained model to assess performance in downstream tasks.

5.2 Metric Functions for Instruction Embedding

In the Firm-Vehicle network, the MEAN strategy calculates the embedding vector of
binary functions using the last hidden layer of non-first instructions. To compare embed-
ding vector similarities, four methods are utilized: cosine similarity,Manhattan distance,
Euclidean distance, and dot product similarity. Cosine similarity, notably, measures the
cosine of the angle between two vectors, focusing on directional differences rather than

Firm-Vehicle: Trusted Communication Enabled Instruction Embedding Model 399

magnitude or distance. The formula for cosine similarity is u · v/|u| · |v|, where u and v
are vectors, u · v is their dot product, and |u| and |v| are their norms. Cosine similarity
values range from −1 to 1, with values closer to 1 indicating higher similarity due to a
smaller angle between vectors.

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3
0.0 0.2 0.4 0.6 0.8 1.0

Tr
ue

 p
os

iti
ve

 ra
te

Tr
ue

 p
os

iti
ve

 ra
te

Tr
ue

 p
os

iti
ve

 ra
te

B: ROC curves of Gemini C: Different Models ROC curves of GeminiA: ROC curves for Basic Block Search

Instruction2Vec

word2vec
Asm2Vec

PalmTree

Firm-Vehicle

1.0

0.8

0.6

0.4

0.2

0.0 0.2 0.4 0.6 0.8 1.0

word2vec
Asm2vec

Gemini
PalmTree

Firm-Vehicle
Firm-Vehicle-W/o-G

Instruction2Vec
one-hot

1.0

0.8

0.6

0.4

0.2

0.0 0.2 0.4 0.6 0.8 1.0

LSTM
Bi-LSTM
Firm-Vehicle

Fig. 3. Experiments on Downstream Task.

5.3 Performance Evaluation of Model on Downstream Tasks

Instruction Search and Similarity Evaluation. We conducted an experiment using
a dataset comprising untrained x86 and ARM assembly instruction basic blocks, with
each architecture representing 50% of the samples. For each basic block, embedding was
computed by averaging the embeddings of the contained instructions. We then identified
semantically equivalent basic blocks using cosine distance between their embeddings, as
shown in Fig. 3A. The results, visualized through ROC curves, compared the effective-
ness of various embedding techniques including Instruction2Vec, Word2vec, Asm2Vec,
PalmTree, and our Firm-Vehicle model. The ROC curves revealed the ranking of AUC
values among the techniques: Word2vec performed the poorest, Instruction2Vec out-
performed Word2vec, Asm2Vec and PalmTree showed good performance but were
surpassed by the Firm-Vehicle model, which demonstrated superior AUC, indicating
a consistent performance improvement.

Additionally, we evaluated the Gemini model using these embeddings and included
a one-hot vector approach as an additional baseline. Despite high AUC values reported
in the original Gemini study, concerns about overfitting arose due to using training and
testing sets from the same source. To assess model generalization more effectively, we
compiled source code from multiple projects (Binutils, Coreutils, FFmpeg, OpenSSL,
Redis) using LLVM to generate diverse x86 and ARM assembly datasets.

Figure 2B presents the AUC values of Gemini using different models to generate
inputs. Based on the results, we can draw the following conclusions:

(1) Despite the superior performance reported in the original Gemini paper, we observe
that the original Gemini [24] model does not generalize well on completely new
testing data.

(2) Manually designed embeddings, Instruction2Vec [13], and one-hot vectors perform
poorly, implying hand-picked features may only be suitable for specific tasks.

(3) Although tested on significantly different datasets from training, Firm-Vehicle still
performs remarkably well and outperforms other schemes. This demonstrates Firm-
Vehicle’s ability to greatly enhance generalization for downstream tasks.

400 R. Chen et al.

(4) All three pretraining tasks contribute to the final Firm-Vehicle model. However,
Firm-Vehicle does not show obvious advantages over other baselines, meaning only
Firm-Vehicle, through its algorithm generating assembly instruction relations, can
perform better instruction embedding than previous methods on this downstream
task. As shown in Fig. 3B, our Firm-Vehicle-W/o-G without the proposed relation
generation algorithm sees a performance drop, on par with Gemini.

Table 1. Reliability Testing in Different Application Scenarios

Scenario Effective
range/m

Absolute Speed
(km/m)

Relative Speed
(km/h)

Maximum
Latency (ms)

suburb 200 50 100 86

highway1 320 160 280 95

highway2 320 280 280 65

NLOS/Urban 100 50 100 96

Intersection 50 50 100 86

Compus and
Business
distribute

50 30 30 76

Performance Comparison of Instruction Embedding Models. To deploy instruction
embeddingmodels on resource-constrained vehicle-side devices, considering the advan-
tages of LSTM over BERT in terms of memory footprint and faster convergence, we
attempted using Bi-LSTM and LSTM to replace BERT for instruction embedding train-
ing [15, 18]. Similarly, we conducted instruction search tests and similarity detection of
instruction embedding vectors on downstream tasks. As illustrated in Fig. 2C, we plotted
the model storage requirements. We have observed that after knowledge distillation, the
storage footprint of the Firm-Vehicle model has been significantly reduced, becoming
nearly equivalent to that of the LSTM and Bi-LSTM models. In the following sections,
we will further compare the performance of these three types of models in the context
of instruction embedding.

In order to deploy instruction embedding models on resource-constrained VANET,
and considering the advantages of LSTM over BERT in terms of memory footprint and
faster convergence, we attempt to use Bi-LSTM and LSTM to replace BERT for training
instruction embeddings. Likewise, we conducted instruction retrieval tests and similarity
detection for instruction embedding vectors in downstream tasks. As depicted in Fig. 2C,
we have illustrated the storage requirements of the models. Our findings suggest that
although the proposedFirm-Vehiclemodel utilizes lightweight recurrent neural networks
after distillation from the BERTmodel, it demonstrates significant performance benefits.

From Fig. 3C, our study compares the Firm-Vehicle with LSTM and Bi-LSTM
models that have not undergone knowledge distillation, utilizing the ROC metric. The
results indicate that the ROC performance of the Firm-Vehicle is superior to that of both
LSTM and Bi-LSTM models, which is in line with our expectations.

Firm-Vehicle: Trusted Communication Enabled Instruction Embedding Model 401

Upon completion of the knowledge distillation process, the compressedFirm-Vehicle
model was deployed to VANET. We conducted response time tests for the model under
various scenarios. From Table 1, performance metrics for different application scenarios
were obtained by deploying the Firm-Vehiclemodel in an embedded device environment,
specifically on a Raspberry Pi 4B, using the NS3 simulator. The test results indicate
that the latency of the trustworthy communication scheme proposed in this paper is
approximately 70–100 ms, which meets the requirements of most application scenarios.
Therefore, the instruction embedding model compression method based on knowledge
distillation proposed in this study is capable of operating effectively within resource-
constrained VANET environments.

6 Conclusion

We designed an algorithm to efficiently generate assembly call graphs required by the
instruction embeddingmodel without relying on third-party tools. Our approach acceler-
ated call graph generation and improved model stability for efficient instruction embed-
ding under limitations.Moreover, we utilizedmodel compression techniques to distill the
complex embeddingmodel with instructions on the central server throughmodel distilla-
tion, obtaining a lightweight model suitable for deployment in the resource-constrained
VANET environment, effectively operate in the resource-limited VANET to meet the
stringent requirements for computational resources and fast response capabilities in
VANET.

References

1. Chen, H., Liu, J., Wang, J., et al.: Towards secure intra-vehicle communications in 5G
advanced and beyond: vulnerabilities, attacks and countermeasures. Veh. Commun. 39,
100548 (2023)

2. Chua, Z.L., Shen, S., Saxena, P., et al.: Neural nets can learn function type signatures from
binaries. In: 26th USENIX Security Symposium (USENIX Security 17), pp. 99–116 (2017)

3. Dalvi, F., Sajjad, H., Durrani, N., et al.: Analyzing redundancy in pretrained transformer
models. http://arXiv.org/abs/2004.04010 (2020)

4. Devlin, J., Chang, M., Lee, K., et al.: BERT: pre-training of deep bidirectional transformers
for language understanding. CoRR abs/1810.04805. http://arXiv.org/abs/1810.04805 (2018)

5. Ding, S.H., Fung, B.C., Charland, P.: Asm2vec: boosting static representation robustness
for binary clone search against code obfuscation and compiler optimization. In: 2019 IEEE
Symposium on Security and Privacy (SP), pp. 472–489. IEEE (2019)

6. Duan, Y., Li, X., Wang, J., et al.: DeepBinDiff: learning program-wide code representations
for binary diffing. In: Network and Distributed System Security Symposium (2020)

7. Feng, X., Zhu, X., Han, Q.L., et al.: Detecting vulnerability on IoT device firmware: a survey.
IEEE/CAA J. Automatica Sinica 10(1), 25–41 (2022)

8. Ferguson, J.: Reverse engineering code with IDA Pro. Syngress (2008)
9. Guo,W.,Mu,D., Xing, X., et al.: DEEPVSA: facilitating value-set analysis with deep learning

for postmortem program analysis. In: 28th USENIX Security Symposium (USENIX Security
19), pp. 1787–1804 (2019)

10. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint:
http://arXiv.org/abs/1503.02531 (2015)

http://arXiv.org/abs/2004.04010
http://arXiv.org/abs/1810.04805
http://arXiv.org/abs/2004.04010

402 R. Chen et al.

11. Kim, G., Hong, S., Franz,M., et al.: Improving cross-platform binary analysis using represen-
tation learning via graph alignment. In: Proceedings of the 31st ACMSIGSOFT International
Symposium on Software Testing and Analysis, pp. 151–163 (2022)

12. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program analysis and
transformation, San Jose, CA, USA, pp. 75–88 (2004)

13. Lee,Y.J., Choi, S.H.,Kim,C., et al.: Learningbinary codewith deep learning to detect software
weakness. In: KSII the 9th International Conference on Internet (ICONI) 2017 Symposium
(2017)

14. Li, X., Qu, Y., Yin, H.: PalmTree: learning an assembly language model for instruction
embedding. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, pp. 3236–3251 (2021)

15. Lin, J., Liu, Z., Wang, H., et al.: AMC: AutoML for model compression and acceleration on
mobile devices. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018.
LNCS, vol. 11211, pp. 815–832 (2018). https://doi.org/10.1007/978-3-030-01234-2_48

16. Mikolov, T., Sutskever, I., Chen, K., et al.: Distributed representations of words and phrases
and their compositionality. In: Advances in Neural Information Processing Systems, vol. 26
(2013)

17. Park, J., Lee, S., Hong, J., et al.: Static analysis of JNI programs via binary decompilation.
IEEE Trans. Softw. Eng. (2023)

18. Park, S., Choi, W.: Regulated subspace projection based local model update compression for
communication-efficient federated learning. IEEE J. Sel. Areas Commun. 41(4), 964–976
(2023)

19. Riley, G.F., Henderson, T.R.: The ns-3 network simulator. In:Wehrle, K., Güneş, M., Gross, J.
(eds.) Modeling and Tools for Network Simulation, pp. 15–34. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-12331-3_2

20. Shen, M., Lu, H., Wang, F., et al.: Secure and efficient blockchain-assisted authentication for
edge-integrated internet-of-vehicles. IEEE Trans. Veh. Technol. 71(11), 12250–12263 (2022)

21. Song,Q., Zhang,Y.,Wang, B., et al.: Inter-bin: interaction-based cross-architecture IoT binary
similarity comparison. IEEE Internet Things J. 9(20), 20018–20033 (2022)

22. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In:
Advances in Neural Information Processing Systems, vol. 27 (2014)

23. Tang, R., Lu, Y., Liu, L., et al.: Distilling task-specific knowledge from BERT into simple
neural networks. arXiv preprint: http://arXiv.org/abs/1903.12136 (2019)

24. Xu, X., Liu, C., Feng, Q., et al.: Neural network-based graph embedding for cross-platform
binary code similarity detection. In: Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pp. 363–376 (2017)

25. Zhang, X., Sun, W., Pang, J., et al.: Similarity metric method for binary basic blocks of cross-
instruction set architecture. In: Proceedings 2020 Workshop on Binary Analysis Research
(2020)

26. Zhao, J., Wang, R.: FedMix: a Sybil attack detection system considering cross-layer infor-
mation fusion and privacy protection. In: 2022 19th Annual IEEE International Conference
on Sensing, Communication, and Networking (SECON), pp. 199–207. IEEE (2022)

27. Zuo, F., Li, X., Young, P., et al.: Neural machine translation inspired binary code similarity
comparison beyond function pairs. arXiv preprint: http://arXiv.org/abs/1808.04706 (2018)

28. Zuo, S., Zhang, Q., Liang, C., et al.: MoeBERT: from BERT to mixture-of-experts via
importance-guided adaptation. arXiv preprint: http://arXiv.org/abs/2204.07675 (2022)

https://doi.org/10.1007/978-3-030-01234-2_48
https://doi.org/10.1007/978-3-642-12331-3_2
http://arXiv.org/abs/1903.12136
http://arXiv.org/abs/1808.04706
http://arXiv.org/abs/2204.07675

	Firm-Vehicle: Trusted Communication Enabled Instruction Embedding Model for Resource-Constrained VANET Environments
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Proposed Method
	4.1 Assembly Instruction Call Graphs Extraction Algorithm
	4.2 Model Distillation

	5 Experimental Results and Analysis
	5.1 Experiment Setup
	5.2 Metric Functions for Instruction Embedding
	5.3 Performance Evaluation of Model on Downstream Tasks

	6 Conclusion
	References

