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Abstract—With advancements in distributed communications
for the IoV, security threats expose significant challenges. While
current IoV intrusion detection systems demonstrate high accu-
racy, they rely heavily on private or easily forged data. Moreover,
the training process incurs increased network communication
costs, fails to protect user privacy, and distorted data degrades
detection performance. To address these limitations, we proposes
a distributed federated learning-based intrusion detection model
for IoV using non-private behavior features. Firstly, we design
a data processing algorithm that groups and slices IoV commu-
nication messages into time series. Then, behavior vectors are
extracted using an attention-based time series model designed
in this work. Attacks are detected by spatially transforming the
residuals with a neural network. Finally, we use a federated
learning algorithm for data processing and training of the model,
effectively reduce communication burden and protect privacy
training data on the vehicle-side. Extensive experiments on two
datasets validate the proposed model, achieving F1 scores of
91.66% and 90.25% respectively, outperforming state-of-the-
art methods. We publicly release the model and algorithms
to improve reproducibility and accessibility of effective IoV
intrusion detection solutions.

Index Terms—Distributed Communication, Attack Behavior
analysis, Intrusion Detection, Privacy Protection, federated learn-
ing

I. INTRODUCTION
In recent years, the proliferation of personal mobile de-

vices has catalyzed advancements in the field of distributed
communications, forming a major technological foundation
for the Internet of Vehicles (IoV). As a promising paradigm
for next-generation Vehicle-to-Everything (V2X) systems, IoV
is expected to transform the underlying communication and
transportation infrastructure [1]. The widespread adoption of
V2X enabled by wireless technologies will likely be facilitated
by IoV. In this context, a vehicle connected to a mobile
network can communicate with an On-Board Unit (OBU)
equipped with a Road Side Unit (RSU) using IEEE 802.11p
or 5G protocols. IoV represents an integrated, open network
architecture that interconnects vehicles, nearby infrastructure,
and the public Internet.

However, the high level of connectivity in connected vehi-
cles makes them vulnerable to various types of cyber attacks
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that could result in malicious control of the vehicle on the road,
posing serious threats to human life [2]–[7]. Therefore, it is
imperative to study intrusion detection models that can protect
vehicle privacy data and communication units from malicious
attacks. By implementing an intrusion detection model, the
embedded system of the vehicle can be prompted to isolate the
attacked network or enter a safe mode, reducing the security
threats while the vehicle is on the road. Also, security threats
to the IoV can be broadly classified into two categories: in-
vehicle network (IVN) attacks and external vehicle network
attacks. IVN attacks refer to attacks that occur within the vehi-
cle network, while external vehicle network attacks are attacks
that originate from outside the vehicle network. These attacks
include denial of service (DoS), distributed DoS (DDoS),
replay, spoofing, and brute-force attacks. DDoS attacks can be
launched by flooding a node with redundant messages, causing
it to overload and rendering it unable to process legitimate
requests. Spoofing attacks, on the other hand, can attempt to
interrupt communication between two nodes, leading to an
attack similar to a DoS attack.

In prior research such as [8], autoencoder-based intrusion
detection systems using Long Short-Term Memory (LSTM)
networks were proposed, achieving high accuracy of 99-100%
in detecting known and unknown attacks in IoV networks.
While the high accuracy provides guarantees for in-vehicle
network security, such performance relies on decisive weighted
features in datasets, as basic neural networks can also attain
high detection accuracy. Recent studies like [2], [3], [9] have
applied transfer learning techniques for intrusion detection in
in-vehicle networks, utilizing Controller Area Network (CAN)
DATA fields from the CAN intrusion dataset [10], [11] as
training features. By transforming the DATA into matrix repre-
sentations and using Convolutional Neural Networks (CNNs),
promising results have been achieved. However, the CAN
DATA field contains extensive private vehicle information
that is easily falsified and difficult to analyze, posing serious
user privacy risks. Additionally, existing DATA features are
generated based on attacker characteristics without consid-
ering privacy preservation or communication overheads with
RSU during model training. While timestamp and ID fields
can effectively simulate messages, the simulated DATA risks
inauthenticity. Effective IoV intrusion detection that protects
user privacy and communication efficiency remains an open
challenge requiring further research.

To address the challenges prevalent in current research,



we propose an intricate intrusion detection model based on
attack behavior analysis. Initially, our meticulously designed
data processing algorithm is capable of excluding data con-
taining private information, such as easily forged CAN data
fields. Further, in the training dataset, we selectively use non-
sensitive requests like duration, bytes sent, and bytes received,
thereby significantly mitigating the risk of privacy leakage
induced by sensitive data. On this basis, we propose the
same source property of attacks. This property groups data
from the perspectives of both the attacker and the regular
user, and then slices the grouped data over time to obtain a
training dataset rich in behavioral information. Subsequently,
we innovatively enhance the detection model by fusing the
detection results of each timestep with the final result using
an additive attention mechanism and employ a residual neural
network for the ultimate detection. This design improves the
detection outcome in both accuracy and robustness compared
to existing models. Finally, we use a federated learning
algorithm to train the detection model. This strategy not
only protects the privacy data within the model from being
leaked but also reduces the communication costs for vehicles
participating in the training. In summary, our method yields
significant advantages in privacy protection, communication
cost reduction, and detection result enhancement.

Above all, we are the major contribution of this work is as
follows:

• Our proposed detection model is the first for IoV that
does not rely on private user data, easily falsified features,
or features with decisive weights. By extracting temporal
slices containing user behaviors from grouped data, we
improve model accuracy and robustness.

• We enhance the attention-based time series model to iden-
tify more user behavior information and reduce behavior
data loss. Meanwhile, federated learning is leveraged to
train the model, preserving user privacy while lowering
communication overhead.

• Experiments on the UNSW-NB 15 [12] and CAN-
intrusion-datasets [11] are conducted, with privacy-
sensitive fields discarded to avoid leaks.

• Compared to state-of-the-art models, our model achieves
F1 scores of 91.66% and 90.25% respectively. Addi-
tionally, we publicly release data processing algorithms
and model code to alleviate the scarcity of reproducible,
effective models in this domain.

The rest of this paper is organized as follows. Section II
summarizes related work. In Section III, we introduce the
threat models that need to be studied in this paper. In section
IV, we elaborate on the overall system design of the intrusion
detection model, the newly designed datasets processing algo-
rithm and the detection model training process. Section V and
VI presents comparative experiments on the detection models.
Section VII concludes the work.

II. RELATE WORK
In this section, we present the relevant work considered to

identify the gaps in the proposed study. Intrusion detection

in external-vehicle networks has also garnered extensive at-
tention. Keval Doshi [13] proposed a novel anomaly-based
Intrusion Detection System (IDS) capable of detecting and
mitigating such emerging types of DDoS attacks in a timely
manner, although it does not account for other types of
attacks. Yang et al. [2] introduced a multi-layered hybrid
IDS that combines signature-based and anomaly-based IDS
to detect both known and unknown attacks on vehicular
networks, with performance evaluation conducted on the CIC-
IDS 2017 [14] dataset. Khan et al. [15] presented a multi-
stage intrusion detection framework to identify intrusions from
ITS and generate a lower false-positive rate. The proposed
framework can automatically differentiate intrusions in real-
time. It is based on a state-of-normalcy and a deep learning-
centric Bi-directional Long LSTM architecture, effectively
identifying intrusions from the foundational network gateways
and communication networks of autonomous driving vehicles.

In the realm of intrusion detection within vehicular net-
works, various methods have been devised for detecting ve-
hicle anomalies and faulty sensors. Notably, some methods
proposed are of low computational expense and can detect
anomalies by analyzing normal behavior patterns alone. They
do not require attack data to be labeled to build a profile
of normal behavior, as any deviation from normal behavioral
patterns may suggest the occurrence of an anomaly. Qin et
al. [10] introduced a cloud-vehicle cooperative IDS based on
multi-dimensional features that addresses data heterogeneity
by abstracting different vehicle data into the same feature
space. Thus, datasets from different vehicles can be input into
a single model for multi-classification, naturally solving the
problem of model portability.

Traditional machine learning techniques have been applied
for intrusion detection in vehicular networks, such as tree-
structured models [16], and probabilistic data structures [4],
[5], [5]. With the rise of deep learning, techniques like
interpretable neural networks [17]–[19], generative adversarial
networks [20], autoencoders with time series models [8], and
convolutional neural networks [2], [3] have also been investi-
gated for vehicular intrusion detection. These aim to improve
detection accuracy and adaptability compared to classical
methods, as well as generate realistic attack samples. However,
existing work has mostly focused on CAN bus networks. With
more complex automotive architectures emerging, advanced
deep learning solutions tailored for heterogeneous in-vehicle
environments need to be developed.

Federated learning (FL) emerged and spread to address
the problem of standard deep learning solutions that are
difficult to implement in privacy scenarios [21]. A central
server connects multiple vehicles via 5G or IEEE 802.11p
protocols to jointly train intrusion detection models [22], [23].
Unlike the centralized data collection scheme in standard deep
learning, the data in federated training is widely distributed
across different local devices. Also, the global server only
specifies the initial training model and the associated aggrega-
tion algorithm, and does not collect any training data, which
do not have direct access to the training data [24], [25]. This



approach reduces some of the costs associated with traditional
centralized models. However, it also introduces issues related
to bandwidth and privacy when transmitting gradient updates.
To address these concerns, a combination of compression and
encryption can be used to speed up model transmission while
also preventing unauthorized changes. Moreover, only model-
related parameters are transmitted during the communication
process. The transmission of raw data and its key statistics is
prohibited [26]. Currently, the standard aggregation algorithm
in federation learning is FedAvg [21]. The design of this
algorithm assumes that the data is uniformly distributed in
each local device.

Our proposed intrusion detection system (IDS) has sev-
eral advantages over existing work related to IoV intrusion
detection. Firstly, our IDS is trained on non-private feature
data using federated learning from publicly available datasets,
which effectively avoids the leakage of user’s private data.
Secondly, our IDS does not rely on features with deterministic
weights for feature identification, which helps to avoid model
misclassification and enables more effective adaptation to
real-world scenarios. Thirdly, compared to other IDSs that
use machine learning and deep learning techniques, our IDS
achieves better accuracy in terms of detection rate.

III. THREAT MODEL

A. In-Vehicle Network Threat Model

The in-vehicle networks are confronted with a diverse array
of security threats, encompassing a spectrum from remote
attacks to local access intrusions. In the domain of remote
attacks, DoS/DDoS assaults have the potential to disrupt
network services, while malware and botnets could be utilized
to commandeer or coordinate attacks on vehicles [6], [7].
Local attacks include physical access intrusions, such as direct
assaults via a vehicle’s OBD-II port, and sensor spoofing
attacks that manipulate vehicle behavior through deceptive
signals like falsified GPS data. In the realm of wireless attacks,
man-in-the-middle attacks have the capability to intercept and
alter communication data, whereas electronic jamming and
signal blocking can undermine the wireless communications of
a vehicle. These security threats not only jeopardize the safety
of vehicles and their passengers but also pose a risk to driver
privacy and can negatively impact the brand reputation of
vehicle manufacturers. Consequently, as vehicles increasingly
rely on interconnected electronic systems, the implementation
of multi-layered, comprehensive intrusion detection measures
becomes particularly critical.

B. External-Vehicle Network Threat Model

In similar contexts, external-vehicle networking technolo-
gies can facilitate the interaction and communication between
vehicles and other intelligent transportation system entities,
including pedestrians, infrastructure, smart terminals, and
network systems [2]–[5]. With the advancement of modern
vehicular networking technologies, the connectivity between
vehicles is increasingly enhanced, and the external vehic-
ular networks are gradually evolving into a comprehensive

large-scale system encompassing many networks and devices.
Therefore, such peripheral vehicular networks are extremely
vulnerable to common network threats, where each vehicle
and device can be a potential attack entry point. Typical net-
work attack means in vehicular network environments include
Denial of Service (DoS), Global Positioning System (GPS)
spoofing, signal jamming, data sniffing, brute-force cracking,
zombie network control, system penetration, and cyber attacks.
Data privacy attacks within external-vehicle network involve
unauthorized data access and dissemination, as well as identity
theft, which could lead to the exposure of personal user
information or impersonation of user identities.

To enhance the intrusion detection capabilities of intelligent
vehicular network systems and prevent severe damages that
could be caused by hacker attacks, we propose an intrusion
detection model for vehicular networks based on distributed
federated learning using non-proprietary behavioral features.

IV. PROPOSED METHOD

This section analyzes the design rationale and mathematical
derivations of the data processing algorithm from the per-
spective of attack behaviors, and introduces the application
scenarios of the algorithm. From Fig. 1, to prevent leakage of
private user data, we avoid using features containing privacy
information. Instead, we adopt behavior analysis techniques
to enhance detection capabilities. Additionally, we elaborate
on the distributed training solution to address the issues of
communication overhead on in-vehicle devices and potential
data leakage risks with centralized training.

A. Data Preprocessing

1) The Same Source Property: Fig. 2 illustrates mining
potential attack behaviors using the same source property. In-
spired by cache algorithms where users often reaccess recently
visited areas, we found through analysis that users tend to
revisit addresses within a short timeframe, termed the same
source property.

In external/in-vehicle network attacks (Fig. 2A), attackers
repeatedly target addresses to achieve goals, often disorderly.
Even deliberately disguised, other features may expose them.
In contrast, normal users show contextual relationships and do
not redundantly message vehicles. The same source property
also manifests in in-vehicle networks (Fig. 2B). For instance,
brake/acceleration ECUs are invoked more frequently than
sunroof/windows during driving.

From Algorithm 1, we grouped datasets by the same source
property, using IP source address for vehicle extranets and
CAN ID for intranets. We stored the grouped data in files by
line with the same grouping flag to avoid excessive memory
usage during calculation and enable easy viewing of grouping
results and error checking.

2) Extraction Behavior Vectors: The grouped data cannot
be directly used for model training, we need further pro-
cessing. In this article, we used the UNSW-NB 15 [12] and
CAN-intrusion-datasets [11]. In the UNSW-NB 15 datasets,
only dur, sbytes, and dbytes features are retained , in the
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Fig. 2. A: The same source property of the attacker on the External-Vehicle
Network. B: The same source property of the attacker on the In-Vehicle
Network.

Algorithm 1 Data Processing Algorithms Based on The Same
Source Property
Input: D: External/In-Vehicle network communication

datasets
Output: xnorm: A datasets in vector form containing behav-

ioral information available for training
1: for Di in D do
2: Format each Di

3: Remove fields containing private information to obtain
Table I

4: Fill in zeros for meaningless values in Di

5: end for
6: Dg ← Group D by unique identifiers.
7: V ← Sort by the same source property and slice Dg based

on the time of occurrence.
8: xnorm ← Vx−Vmin

Vmax−Vmin
. Normalize V using Vmin and

Vmax.
9: Return xnorm

CAN-intrusion-datasets datasets, the features of CAN ID are
dropped. Through this process, we delete the possibility of
private data to avoid leakage of user private data, and these
data are relatively easy to obtain. After the private data is
removed, in order to facilitate better training of the time model,
and then segment it, we choose 64 time steps as a segment unit,
and the segmented data is used as the basic unit for training
corpus.

The grouped data needs to be arranged in the order of access
time, and the time step is used as the slice length to divide the
grouped data. This operation retains the chronological nature
of the data and is also conducive to the training of the time
model. After visiting for a period of time, the user will stay
at different addresses, and these stay times include the user’s
behavior.

To meet the requirements of the input format in the neural
network and to avoid differences in the value of data, it is
necessary to compress the size ratio of the value within a
range, and then use the Min-Max technique to normalize the
data xnorm = (Vx−Vmin)/(Vmax−Vmin). Where Vmin is the
smallest data in a slice, Vmax is the largest data in a slice, Vx

in a slice needs to be normalized data, xnorm is the normalized
data. If the maximum value and the minimum value are equal,
in order to avoid the denominator being 0, xnorm is directly
set to 0.

B. Detection Model Design

Through the processing of Section IV-A, we obtained slice
data, which contains user behavior information, but does
not contain user privacy data. Since the user’s behavior has
context, we use a bidirectional recurrent neural network (Bi-
LSTM) as the time series model. The output of the hidden
layer of the time series model also contains a large amount
of behavioral information. If it is discarded, the behavioral
information will be lost, as shown in Fig. 1 Data Processing.

To avoid this problem, we improve additive attention by
fusing the hidden and output layers to obtain detection vectors.
Through the residual neural network, we obtained the detection
results. Bi-LSTM is the abbreviation of Bi-directional Long
Short-Term Memory, which is a bidirectional recurrent neural
network composed of forward LSTM and backward LSTM.
Compared with the unidirectional LSTM, Bi-LSTM can rec-
ognize the bidirectional information of the sequence, and can
more effectively recognize the context of the sequence.

ft = σ(Wf [ht−1, xt] + bf ) (1)



it = σ(Wi[ht−1, xt] + bi) (2)

Ĉt = tanh(Wc[ht−1, xt] + bc) (3)

Ct = ft ∗ Ct−1 + it ∗ Ĉt (4)

In our work, the slice order x of the time series is intro-
duced as input to the Bi-LSTM model, and the length of
the slice corresponds to the time step t in the time series
model. During the initiation of the model computation, the
hidden layer lacks data, necessitating the initialization of the
hidden layer data to 0. Since the model in this study is
tailored for different datasets, each with a distinct number
of features, we must convert these different features into the
same dimensionality via a vector using ReLu(XW + b).
Here, W ∈ Rfeatures size×hidden size, x is the data of the
dataset comprising varying numbers of features as input, and
features size is the size of the feature number for different
datasets.

As shown in Equation (1), the slice vectors x encapsulating
behavioral data are transformed into the hidden dimensionality.
Within the time series model, the previous cell state and
memory gate values are computed. For example, the forgetting
gate ft ∈ Rbatch size×hidden size has an output dimension set
by the hyperparameters batch size and hidden size, with a
sigmoid activation. it, Ĉt, and Ĉt follow similar formulations.

Ot = σ(Wo[ht−1, xt] + bo) (5)

ht = Ot ∗ tanh(Ct) (6)

After completing the calculation of the internal parameters
in the time series model and unifying the dimensions, the
internal results are output, such as the equation (4) outputs
the cell state as the input of the cell state of the next time
step, and after the final output of the time series model, we
discard it not into the calculation of the attention model, the
output results of the input layer, as equation (5), and the hidden
layer, as equation (6), as the attention query, and the key and
value.

scores = Softmax[tanh(q + k)W + b] (7)

Ob = scores · v (8)

We hypothesize that the hidden layer outputs of the time
series model may also encapsulate behavioral data patterns
embedded in the time series input. To fully utilize these poten-
tial latent behavioral representations, as formalized in Equation
(7), we first perform an additive operation on the query and
key vectors, followed by a linear transformation and softmax
normalization to obtain attention scores. In Equation (7), q
corresponds to the output Ot, and k, v correspond to the hidden
states ht. The dot product of v and the scores in Equation

Algorithm 2 Model Training Algorithm Based on Federated
Learning
Input: N: The set of clients; T: The total number of global

iterations; s: the maximum number of selected clients in
each iteration

Output: wt+1: Aggregated model global parameters
1: Randomly initialize global parameters w
2: for t ← 0 to T-1 do
3: Randomly choose at most s clients
4: for i ← 0 to s do
5: gi,t ← argminwL(Di;wt) \\ Di represents the data

of the i-th client
6: gst ← gst + gi,t
7: end for
8: wt+1 ← wt − ηt

|Di|
|D| g

s
t \\The server aggregates the

returned parameters
9: end for

(7) fuses the information from the hidden and output layers,
capturing latent user behaviors. This fused representation then
passes through the residual neural network blocks in Equations
vo = ReLu(ObW + bob) and result = dropout(vo) + vo to
obtain the final detection outcome.

C. Federated Learning For Model Training

Upon finalizing the architecture of our detection model, we
embarked on the training phase using federated learning, the
details of which are outlined in Algorithm 2. The procedure
unfolds as follows:

(1) A central server commences by initializing a blank slate
for the global model.

(2) For each round of federated learning, the central server
dispatches the current global model parameters, denoted by
w, to the RSU over secure dedicated lines. Subsequently, the
RSU disseminates the model parameters to each vehicle client
within its local network.

(3) Vehicle clients, each possessing their local dataset Di,
proceed to train the received model. They calculate updated
model gradients gi,t and transmit these updates back to the
RSU.

(4) Upon receipt, the RSU compiles the updated models
from its network of vehicle clients and conveys this aggregated
information, gst , to the central server. The central server then
applies a global aggregation algorithm to merge the updates
from all RSUs, resulting in an updated global model, repre-
sented by wt+1. Finally, the central server refreshes its global
model with wt+1, completing the current round of aggregation.

This iterative process is repeated across multiple rounds to
progressively refine the model, enhancing its sophistication
and detection capabilities. Each round propels the global
model closer to optimal performance, leveraging the dis-
tributed learning paradigm inherent in federated learning.



TABLE I
EXPLANATION OF THE FEATURES USED IN THE PAPER

data-set features explanation

UNSW-NB 15 [12]
srcip Source IP address, as a

condition for data grouping

sbytes Source to destination
transaction bytes

dbytes Destination to source
transaction bytes

dur The time spent visiting
a destination address.

CAN-intrusion-datasets [11] Timestamp recorded time, calculating
dur features by it

dur The time spent visiting
a destination address.

CAN ID
identifier of CAN message
in HEX (ex. 043f) , as a

condition for data grouping

DLC number of data bytes,
from 0 to 8

V. EXPERIMENTATION

A. Datasets

To rigorously assess the detection capabilities of our model
under a variety of attack scenarios, we incorporated two
extensively recognized datasets, namely UNSW-NB15 [12]
and CAN-Intrusion-Dataset [11], originating from different
settings to provide a comprehensive performance evaluation.

The UNSW-NB15 dataset comprises a substantial compila-
tion of 2,540,047 events, out of which 321,283 are identified
as attack instances. Additionally, the CAN-Intrusion-Dataset
serves as a critical benchmark for gauging the efficacy of
in-vehicle network intrusion detection systems. This dataset
encompasses a total of 4,613,909 records, with attacks consti-
tuting 2,244,041 of these entries.

As indicated in Table I, the selection of features for model
training was meticulously derived using a specialized data
processing algorithm, ensuring that the most relevant and
impactful attributes were included in the analysis.

B. Experimental Setup

This study’s algorithm was implemented in a Ubuntu/Linux
18.04 OS environment, with Python 3.10 as the programming
language of choice. The development of the deep neural net-
work models leveraged the application programming interfaces
(APIs) of the PyTorch 1.13 deep learning framework. Model
development and initial experimentation were carried out on
a robust computing platform, which boasted an Nvidia RTX
3060Ti GPU, an 8-core Intel Core i7 10700F CPU running at
2.9GHz, and 32GB RAM.

Model training was GPU-accelerated, utilizing the Adam
optimization algorithm across a total of 150 epochs within
a federated learning context. In this setup, each federated
learning participant completed 10 epochs of local training. The
model’s initial learning rate was set at 0.015 and underwent
an exponential decay after each epoch, decreasing by a factor
of 0.95, to fine-tune the learning process. Detailed parameters

TABLE II
FEDERATED LEARNING FOR TRAINING MODEL PARAMETERS AND

HYPERPARAMETERS

Round number 150
Client number 100
Number of clients selected for a
round

10

Local clients batch size 10
Local clients epoch 5
Learning rate 0.015
Learning rate scheduler 0.95
optimization function Adam
loss function Cross Entropy Loss

underpinning the federated learning approach are delineated
in Table II.

C. Evaluation Metrics

This paper selects the F1 Score as the evaluation metric.
The F1 Score is a highly significant performance measure
because it does not exhibit bias towards any particular class,
unlike precision or recall, but rather provides a comprehensive
performance index. The F1 Score is a commonly used metric
in statistics and machine learning to assess the accuracy of
classification models, particularly in scenarios where there is
an imbalance in the dataset. It represents the harmonic mean
of precision and recall.

VI. EVALUATION AND DISCUSSION

A. Communications Cost and The Same Source Property
Validation Experiments

In the context of external and in-vehicle networks, Road-
Side Units (RSUs) and vehicles wirelessly engage in commu-
nication via 5G or 802.11p standards to facilitate federated
learning. Centralized training incurs significant overhead due
to the necessity of uploading local datasets to central repos-
itories during vehicle operations. We evaluate these costs by
examining the data transfer between local vehicles and the
RSU.

Fig. 3B illustrates that the costs associated with centralized
training are proportional to the size of the dataset, leading to
substantial overhead for larger datasets. In contrast, federated
learning is more efficient, as it necessitates only intermittent
uploads of model weights. In our experimental setup, the
cost of a single round of federated uploads is determined
by the cumulative size of the local models and the dataset
attributes. Conversely, the download costs are equivalent to
the size of the global model disseminated to all participating
vehicles. We quantified the aggregate data exchanged over 450
communication rounds between the vehicles and the RSU.
For federated learning, the communication cost is computed
as cost =

∑round
i Ws(i), where round signifies the number

of communication iterations and Ws represents the size of
the model weights in bits. Centralized training costs, on the
other hand, equate to the total size of the dataset since it
requires a central aggregation of data from all vehicles. The



data indicates that federated learning generally results in lower
communication overhead.

Our research also encompassed four experimental valida-
tions of the effectiveness of the proposed ”user behavior same
source property.” When the model was trained without group-
ing by this property, we observed considerable variations and
instability over fixed 64-record intervals. Control experiments,
which did not utilize attention mechanisms, confirmed that the
observed jitter was associated with the time series data and
the attention mechanisms employed. These findings support
the conclusion that incorporating the ”same source property”
improves the stability and convergence of the training process.

B. Ablation Study of Modules

To ascertain the necessity and efficiency of the modular
components within the model introduced in this study, we
undertook an exhaustive ablation study. This involved sys-
tematically dismantling individual modules and conducting
quintuple sets of control experiments per module, adopting the
median outcome as a stabilizing factor against variabilities in
the experimental conditions.

Depicted in Fig. 3A, our objective was to discern the
contributory significance of each module by either substituting
or excluding them and observing the resultant impact on
the model’s performance in detection tasks. Our investigative
efforts extended to the analysis of time series data using LSTM
and attention-augmented Bi-LSTM structures, wherein the
Bi-LSTM’s efficacy markedly exceeded that of the standard
unidirectional LSTM model. In scenarios involving unidirec-
tional time series, control experiments were implemented both
with and without the integration of attention mechanisms.
These trials demonstrated a clear superiority of the attention-
enhanced unidirectional time series over its counterpart lacking
such mechanisms.

Furthermore, the training process exhibited significant
volatility in the absence of the ”same source property” within
the data processing algorithm. This observation led us to
conclude that the proposed algorithm for data aggregation
and the model’s modules are essential, effectively mitigating
the risk associated with modular redundancy. Given the array
of evaluation metrics, the Bi-LSTM model with time series
analysis emerged as the superior choice, outclassing its con-
temporaries in the realm of detection capabilities.

C. Comparisons With The State of The Art

We have validated the data processing algorithm and de-
tection model proposed in this paper on two datasets. From
Table III, during the process of handling the datasets, we ob-
served that it contained a considerable number of deterministic
weighted features in Table I. Our findings indicate that, even
when utilizing more streamlined models and data processing
techniques, this study attains high levels of accuracy and robust
detection performance, offering a favorable comparison to the
results [17], [28], [29]. However, the datasets also contained
elements of personal data. To address privacy concerns and
adhere to data protection standards, we deliberately excluded

TABLE III
PERFORMANCE COMPARISON WITH STATE-OF-THE-ART MODELS

Model F1
privacy-
sensitive

fields
Precision Privacy

Protection

Proposed
Model

91.66%,
90.25%

w/o,
w/o

90.16%,
94.71% YES

CNN-based
IDS [27] 98.83% w/ 99.10% NO

Homogenous
DeepRed [17] 92.2%-

96.32% w/ 89.42% -
98.32% NO

Enhance-MS
-IDS [15] - w/ 99.13% NO

WCGAN-IDS [28] - w/ 86.3% NO

MTH-IDS [2] 99.895% w/ - NO

FedMix [29] 91.3% w/ 98.5% NO

any features that could potentially contain sensitive personal
information or exhibit deterministic weighting.

In previous studies [17] [30], explainable deep learning
technologies were used for model detection, achieving an F1
score of 0.90-0.97. In our study, we used the same datasets
and achieved an F1 score of 91.66%. However, their work
overlooked privacy protection and the risk of data leakage
through model training. Other research [2], [27] used deep
learning for intrusion detection but did not consider the com-
munication pressure and privacy issues in edge training [29]. In
contrast, our approach integrates federated deep learning with
their training methods, significantly reducing communication
costs compared to centralized training on a central server, and
is not limited by the size of the data set.

Fig. 3. A: Ablation Study of Modules on Different Datasets. B: Communi-
cation Costs on Different Datasets

In the CAN-intrusion-datasets, the DATA field is where
user payloads are stored in CAN communication data, which
contains users’ command operations and other private data.
In real scenarios, these private data are difficult for security
personnel to analyze, so this feature was not considered in our
model. We performed experimental training with three fields
in the CAN-intrusion-datasets datasets. Compared to other
studies [2], we found that if this field is removed, other studies
would not be able to proceed, but our model can achieve an
F1 value of 91.66%.



VII. CONCLUSION

We proposed a federated learning-based vehicular network
intrusion detection model using non-private behavioral fea-
tures, outperforming current methods. Our approach includes
a data processing algorithm that converted vehicular network
messages into time series, and an attention-based model for
behavioral vector extraction. Neural networks were used for
detecting intrusions through spatial transformations of resid-
uals. This method reduced communication load and ensures
data privacy. Validation on two datasets yielded F1 scores of
91.66% and 90.25%, surpassing other methods. We are open-
sourcing our model for better accessibility and repeatability.

Given the scarcity of labeled datasets in this domain, we
intend to extend this work by reducing model dependence
on limited labeled data. With the assistance of generative
adversarial algorithms and game theory, we can potentially
learn the underlying distributions of positive and negative data
from the available datasets. This would mitigate the issue of
missing data and inadequate labeling during model training
and detection.
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[26] X. Cao, T. Başar, S. Diggavi, Y. C. Eldar, K. B. Letaief, H. V. Poor, and
J. Zhang, “Communication-efficient distributed learning: An overview,”
IEEE Journal on Selected Areas in Communications, 2023.

[27] A. Oseni, N. Moustafa, G. Creech, N. Sohrabi, A. Strelzoff, Z. Tari,
and I. Linkov, “An explainable deep learning framework for resilient
intrusion detection in iot-enabled transportation networks,” IEEE Trans-
actions on Intelligent Transportation Systems, 2022.

[28] Y. He, M. Kong, C. Du, D. Yao, and M. Yu, “Communication security
analysis of intelligent transportation system using 5g internet of things
from the perspective of big data,” IEEE Transactions on Intelligent
Transportation Systems, 2022.

[29] J. Zhao and R. Wang, “Fedmix: A sybil attack detection system consider-
ing cross-layer information fusion and privacy protection,” in 2022 19th
Annual IEEE International Conference on Sensing, Communication, and
Networking (SECON). IEEE, 2022, pp. 199–207.

[30] R. Kumar, P. Kumar, R. Tripathi, G. P. Gupta, and N. Kumar, “P2sf-
iov: A privacy-preservation-based secured framework for internet of
vehicles,” IEEE Transactions on Intelligent Transportation Systems,
vol. 23, no. 11, pp. 22 571–22 582, 2021.


