F

informatics

Article

Balancing Accuracy and Efficiency in Vehicular Network
Firmware Vulnerability Detection: A Fuzzy Matching
Framework with Standardized Data Serialization

Xiyu Fang >%*, Kexun He %3, Yue Wu !, Rui Chen *

check for
updates

Academic Editor: Antony Bryant

Received: 5 June 2025
Revised: 5 July 2025
Accepted: 7 July 2025
Published: 9 July 2025

Citation: Fang, X.;He, K; Wu, Y.;
Chen, R.; Zhao, J. Balancing Accuracy
and Efficiency in Vehicular Network
Firmware Vulnerability Detection: A
Fuzzy Matching Framework with
Standardized Data Serialization.
Informatics 2025,12,67. https://
doi.org/10.3390/informatics12030067

Copyright: © 2025 by the authors.
Licensee MDP], Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ /creativecommons.org/
licenses /by /4.0/).

and Jing Zhao *

School of Computer Science and Engineering, University of Electronic Science and Technology of China,
No. 2006, Xiyuan Avenue, Chengdu Hi-tech Zone (West District), Chengdu 611731, China; ywu@uestc.edu.cn
2 CATARC Automotive Test Center (Tianjin) Co., Ltd., Xianfeng East Road, Dongli District,

Tianjin 300162, China; hekexun@catarc.ac.cn

China Automotive Technology & Research Center Co., Ltd., Xianfeng East Road, Dongli District,

Tianjin 300162, China

School of Software Technology, Dalian University of Technology, Tugiang Road, Jinzhou District,

Dalian 116024, China; 72117004@mail.dlut.edu.cn (R.C.); zhaoj9988@dlut.edu.ch (J.Z.)

* Correspondence: fangxiyu@catarc.ac.cn

Abstract

Firmware vulnerabilities in embedded devices have caused serious security incidents,
necessitating similarity analysis of binary program instruction embeddings to identify vul-
nerabilities. However, existing instruction embedding methods neglect program execution
semantics, resulting in accuracy limitations. Furthermore, current embedding approaches
utilize independent computation across models, where the lack of standardized interaction
information between models makes it difficult for embedding models to efficiently detect
firmware vulnerabilities. To address these challenges, this paper proposes a firmware
vulnerability detection scheme based on statistical inference and code similarity fuzzy
matching analysis for resource-constrained vehicular network environments, helping to
balance both accuracy and efficiency. First, through dynamic programming and neighbor-
hood search techniques, binary code is systematically partitioned into normalized segment
collections according to specific rules. The binary code is then analyzed in segments to
construct semantic equivalence mappings, thereby extracting similarity metrics for function
execution semantics. Subsequently, Google Protocol Buffers (ProtoBuf) is introduced as a
serialization format for inter-model data transmission, serving as a “translation layer” and
“bridging technology” within the firmware vulnerability detection framework. Addition-
ally, a ProtoBuf-based certificate authentication scheme is proposed to enhance vehicular
network communication reliability, improve data serialization efficiency, and increase the
efficiency and accuracy of the detection model. Finally, a vehicular network simulation
environment is established through secondary development on the NS-3 network simulator,
and the functionality and performance of this architecture were thoroughly tested. Results
demonstrate that the algorithm possesses resistance capabilities against common security
threats while minimizing performance impact. Experimental results show that FirmPB
delivers superior accuracy with 0.044 s inference time and 0.932 AUC, outperforming
current SOTA in detection performance.

Keywords: firmware vulnerability detection; protocol buffers (ProtoBuf); program analysis;
resource-constrained; instruction embedding

Informatics 2025, 12, 67

https://doi.org/10.3390/informatics12030067

https://doi.org/10.3390/informatics12030067
https://doi.org/10.3390/informatics12030067
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/informatics
https://www.mdpi.com
https://orcid.org/0009-0007-2324-0030
https://doi.org/10.3390/informatics12030067
https://www.mdpi.com/article/10.3390/informatics12030067?type=check_update&version=1

Informatics 2025, 12, 67

2 of 24

1. Introduction

The Internet of Vehicles (IoV) is a heterogeneous network system composed of vehicu-
lar ad hoc networks and mobile communication networks. Through real-time interconnec-
tion and perception among vehicles, roads, and cloud infrastructure, the IoV significantly
enhances vehicle safety and intelligence in road environments while providing users with
diversified information services and optimizing the driving experience [1]. However, [oV
security protection faces numerous severe challenges. Security issues in vehicular networks
can not only potentially cause property losses to drivers but may in severe cases also
endanger the lives of other road users [2].

According to publicly released data from the China Automotive Research Center,
vulnerabilities in IoV devices have triggered multiple serious security incidents, including
door lock security vulnerabilities, unauthorized access to vehicle cameras, and privacy
issues such as vehicle location information leakage. Relevant statistics indicate that 80%
of IoV devices employ weak cryptographic algorithms with insufficient security strength;
70% of IoV communications are implemented without encryption protection, while 90%
of IoV firmware contains potential security risks [3]. Due to constraints imposed by hard-
ware architectural differences and complex hardware environments, effective detection
is difficult to achieve. Simultaneously, existing embedding methods compute indepen-
dently across models and lack standardized interaction information mechanisms between
models, resulting in low efficiency of embedding models during firmware vulnerability
detection processes.

The challenges in IoV security detection underscore a broader issue in the field of
cybersecurity, namely, the insufficiency of current analytical methods to accurately extract
and analyze program semantics, which is crucial for identifying and mitigating such vul-
nerabilities. Existing similarity analysis methods exhibit insufficient precision in extracting
program semantic information. Current analytical approaches primarily fall into two
paradigms, code-based and graph-based. Code-based methods mainly focus on instruc-
tion contextual relationships while neglecting critical dynamic information such as data
flow. Conversely, graph-based methods emphasize structural information analysis such
as control flow, but overlook semantic associations between instructions. Consequently,
binary programs may dynamically adjust their behavioral characteristics during execution
based on input parameters and runtime environments. Thus, relying solely on either static
or dynamic analysis methods makes it difficult to comprehensively capture all potential
behavioral patterns of a program [1,4,5].

Furthermore, authentication mechanisms and firmware analysis face significant com-
putational efficiency bottlenecks under the current cascaded trust center architecture in
vehicular networks, particularly in V2V (Vehicle-to-Vehicle) communication encryption/de-
cryption application scenarios. The current research domain has yet to establish unified
instruction transmission format specification standards, preventing effective support for
feature input processing by instruction embedding models. This lack of standardization
makes cross-platform data processing consistency difficult to guarantee, thereby severely
affecting detection models’ operational efficiency and accuracy [6-8].

On the other hand, instruction embedding based on high-precision vulnerability de-
tection technology provides effective technical support for vehicular network firmware
security analysis. However, these studies generally lack in-depth discussion and empirical
analysis regarding how unified structured data representation resolves cross-architecture
instruction differences. Notably, existing experimental validations also lack systematic em-
pirical verification through simulation experimental environments. These methodological
limitations lead to questioning of the persuasiveness and practicality of research results,

Informatics 2025, 12, 67

30f24

making it difficult to provide reliable theoretical and practical foundations for optimizing
actual vehicular network system security architectures [2,9,10].

In light of the aforementioned challenges, this paper proposes a firmware vulnerability
detection scheme that balances accuracy and efficiency to achieve efficient operation of in-
struction embedding models in resource-constrained vehicular network environments. This
scheme is specifically designed for resource-constrained vehicular network environments,
utilizing a code similarity fuzzy matching analysis algorithm based on statistical inference
that is capable of efficient security vulnerability identification in vehicular networks under
limited computational resources.

First, beginning at the instruction level of binary programs, the analysis and computa-
tion of semantic similarity are gradually extended to the procedural level, with assembly
code undergoing normalization processing. During the matching operation phase, precise
instruction comparison is performed by applying dynamic programming algorithms for
longest common subsequence to candidate functions, combined with path search and neigh-
borhood search techniques to generate high-quality candidate sets for functions awaiting
matching. This scientifically derives similarity metrics for file execution semantics based
on binary file similarity.

Second, a data transmission serialization format specification based on inter-detection
models is constructed by uniformly defining instruction representation format stan-
dards across multiple processor architectures including ARM/x86/MIPS. Simultane-
ously, a specialized instruction conversion preprocessor is developed to transform var-
ious binary instructions into standardized ProtoBuf message object structures, signifi-
cantly enhancing processing efficiency of detection model data serialization and effec-
tively resolving the detection efficiency issues caused by heterogeneous architecture data
transmission differences.

Finally, the effectiveness of the proposed solution is validated through systematic
model detection experiments and vehicular network simulation experiments based on
the NS-3 network simulator [11]. These experiments integrate the IEEE 802.11p wireless
communication protocol stack with a cascaded trust center architecture, implementing a
complete security verification process from certificate chain management to V2V communi-
cation encryption. Additionally, efficient transmission and processing of multidimensional
data including location information and vehicle status are supported through the ProtoBuf
standardized message encapsulation mechanism.

Above all, the major contributions of this work are as follows:

* We design a code similarity fuzzy matching analysis algorithm based on statistical
inference for resource-constrained vehicular network environments, achieving effi-
cient security vulnerability identification under limited computational resources to
resolve the application difficulties of traditional methods in resource-constrained
environments.

* We develop a semantic similarity analysis framework extending from instruction
level to procedural level, implementing scientific mapping from binary file similarity
to execution semantic similarity through dynamic programming algorithms for the
longest common subsequence in combination with the path search and neighborhood
search techniques. This addresses the insufficient precision of existing methods in
semantic information extraction.

* We construct a data transmission serialization format specification between detec-
tion models. The proposed specification uniformly defines instruction represen-
tation formats for multiple processor architectures, including ARM/x86/MIPS. In
addition, we develop a dedicated instruction conversion preprocessor to resolve

Informatics 2025, 12, 67

40f24

cross-platform data processing consistency issues and improve the detection model’s
operational efficiency.

* By combining model detection experiments with vehicular network simulation experi-
ments based on NS-3 and integrating the IEEE 802.11p protocol stack with a cascaded
trust center architecture, we establish a complete security verification system from
certificate chain management to V2V communication encryption, thereby filling the
gap in existing research regarding systematic empirical verification.

2. Background and Literature Review

Recent studies have shown that representational learning outperforms traditional
heuristic-based methods on many instruction embedding tasks, including binary similarity
detection [8,12], function name prediction, and function boundary identification. The
key to its success is learning vector representations of assembly instructions (also known
as embeddings) at the granularity of instructions, basic blocks, or functions, which can
then be applied to various downstream tasks such as instruction search and firmware
vulnerability detection [7]. While compressing instruction embedding models significantly
reduces storage requirements, it results in poor performance on embedding assembly
instructions [13-15]. Thus, the compressed models cannot run in IoV environments.

Previous work has focused on building pretrained models that can generate such
embeddings, either by fine-tuning these pretrained models or directly applying the obtained
embeddings to downstream tasks [7,8,16]. Based on prior research on learning embeddings,
these can be categorized into unsupervised and supervised learning, both of which have
been explored for instruction embedding and trusted communication in IoV networking.
In the early days of instruction embedding research, many studies employed unsupervised
learning to produce binary code embeddings. The advantage of unsupervised methods is
the lack of requirement for any labeled training data, meaning that it is only necessary to
disassemble binary files (i.e., to identify instructions and function boundaries) and construct
intra- and/or inter-procedural control flow graphs. DeepBindiff [17] and Asm2Vec [18]
are typical examples of such methods; among these, DeepBindiff embeds instructions and
basic blocks using Word2Vec [19].

As research deepened and downstream tasks demanded instruction embedding more
strongly, supervised instruction embedding methods (first proposed by [12]) have shown
advantages. Most previous works trained Siamese architectures on labeled binary code
pairs. Gemini by Xu et al. [12] represents each function as an Augmented Control Flow
Graph (ACFG) and uses them as inputs to a Structure2Vec model. Two identical Struc-
ture2Vec models sharing parameters are constructed as a Siamese network and trained on
ACFG pairs with similarity labels [12].

Today, software supports cross-operating system and instruction set architectures
(ISAs). Software that runs across operating systems may implement the same high-level
functionality but follow different OS interfaces. Depending on the deployed hardware,
binaries can be compiled for different ISAs, which is common among firmware for various
ISAs such as ARMv7, ARMv8, MIPS, etc. Dealing with such heterogeneity poses challenges
for instruction embedding [8,10]. Therefore, platform-agnostic instruction embedding
approaches have garnered great interest. Previous research has proposed various platform-
independent instruction embedding techniques for applications such as vulnerability
search, reuse vulnerability detection, binary similarity detection, etc. The key promise is
that analytical work can seamlessly transfer across platforms. For example, error signatures
only need to be defined once and can be used to search errors in binaries from different
ISAs [20]. Previous works have achieved this by abstracting binaries into OS/ISA-agnostic

Informatics 2025, 12, 67

50f24

assembly instructions. In contrast, Gemini and InnerEye [21] use Siamese models to directly
learn similarity between binaries compiled for different platforms.

Upon reviewing related instruction embedding work, we find that current instruction
embedding research trends towards large models. However, specific domains such as IoV
networking have urgent needs that remain under-explored due to resource constraints.
Motivated by communication scenarios in IoV networking, we study state-of-the-art trusted
communication techniques in VANETs [1,5] to facilitate effective instruction embedding
under such environments.

The architecture of VANETSs can be divided into three domains based on communica-
tion range: intra-vehicle, vehicle-to-infrastructure (V2I), and inter-vehicle communications.
Intra-vehicle communication refers to interactions between the on-board unit (OBU) chipset
and in-vehicle control components such as air conditioning, ABS, ECUs, and infotainment
systems. The circuits and programs are predefined by manufacturers in this closed setting.
There are few external interfaces and the programs are relatively simple with higher se-
curity. User terminals can be dedicated devices or integrated remote controls to operate
specific in-vehicle systems, mostly via the CAN bus or relatively secure wireless means.

V2I communication involves interactions between OBUs and roadside unit (RSU)
infrastructure to enable vehicle-road coordination, driving assistance, and self-driving.
Inter-vehicle communication usually refers to radio frequency direct communications
(V2V) between OBUs of vehicles. By broadcasting basic safety messages via DSRC or
C-V2X, vehicles share their location, speed, and acceleration for safety applications to
generate warnings about hazards and risks. This allows drivers and passengers to prepare
in advance in order to prevent accidents or mitigate adverse consequences [22].

VANETs can be divided into three primary domains: intra-vehicle communication,
vehicle-to-infrastructure (V2I) communication. Intra-vehicle communication mainly in-
volves the interactions between the on-board unit (OBU) chipset [1] and various in-vehicle
control components such as air conditioning, ABS, ECUs, and infotainment systems [23].
In such communication scenarios, related circuits or programs are usually predefined by
manufacturers. Due to fewer external interfaces and relatively simple program design, their
security is higher. User terminals can be either a dedicated device or an integrated remote
control for operating specific in-vehicle systems. Such connections are mostly through
the Controller Area Network (CAN) bus, with some secure wireless options available.
V2I communication refers to the interactions between OBUs and roadside units (RSUs),
enabling functionalities like vehicle-road coordination, driving assistance, and self-driving.

Certificate authentication plays an indispensable role in today’s information systems,
mainly in confirming the legitimacy of user identities and granting corresponding access
permissions when users access target system resources over the internet. For VANET
systems, authentication is the first and most important line of defense. In researching
authentication techniques, ref. [24] proposed a new decentralized VANET authentication
protocol using a novel group signature scheme which provides threshold authentication,
efficient revocation, unforgeability, anonymity, and traceability. In [25], the authors intro-
duced a novel conditional privacy-preserving authentication protocol for VANETs which
binds public keys into pseudonyms to ensure non-repudiation by obtaining real IDs of
misbehaving vehicles. In [26,27], a multi-domain vehicle authentication architecture was
proposed by introducing blockchain technology to establish distributed trust and share
cross-domain information among multiple administrative domains. In [28], the authors
proposed a novel privacy-preserving authentication protocol based on a certificateless
aggregated signature scheme that allows users to generate fuzzy identities to hide their real
identities; in this scheme, even the private key can remain unchanged if the corresponding
pseudonym is updated.

Informatics 2025, 12, 67

6 of 24

Today, infrastructure-based VANET is the primary scheme for deploying intelligent
connected vehicle applications, attracting extensive attention and support from stakehold-
ers such as automakers, chipmakers, transportation authorities, and ISPs. However, data
security and privacy protection must be fully considered when designing VANET system
architectures and communication workflows, which imposes new requirements on VANET
architectures. This paper conducts in-depth analyses of process design and potential secu-
rity risks in VANETS, then proposes a trusted communication scheme based on VANET
infrastructure combined with industry realities and standards to enable more effective
instruction embedding for IoV networking.

3. Proposed Method

3.1. Fuzzy Matching Analysis for Code Similarity
3.1.1. Function Identification

In the training phase, we initially generate binary code for a series of candidate
processes and determine the starting address of each function. Based on these addresses,
we construct a prefix tree to store and match different processor optimization processes.
The prefix tree efficiently stores strings by sharing common prefixes, with each node
representing a potential function start instruction. Node weights are determined by the
recognition rate |TP|/(|TP| + |FP|). This structure facilitates rapid identification and
classification of function entry points. Table 1 provides the notation and abbreviations.

Table 1. Notations and abbreviations.

Notations or Abbreviations Description

XML Extensible Markup Language

ProtoBuf/PB Google Protocol Buffers

IoV Internet of Vehicles

CAN controller area network

V2v Vehicle-to-Vehicle

ECU electronic control unit

OBU On-board Unit

LCS Longest Common Subsequence

BFS Breadth-First Search

CFG Control Flow Graph

FMENS Fuzzy Matching Enhanced Neighborhood Search
CRL Certificate Revocation Lists

CA Certificate Authorities

MTA Main Trust Authority

STA Trust Authorization Center

ERI Electronic Registration Identification

M the predetermined number of pseudonym certificates
oov Out-of-Vocabulary

During the classification phase, we determine which instructions may constitute
function entry points based on node weights. After identifying function starts, we employ
a static CFG recovery algorithm to generate the instruction set for the entire function
body from the specified address. We construct the CFG graph by recursively connecting
directly related instructions. When processing direct and indirect jump instructions, we
appropriately extend boundaries to ensure the correctness and completeness of control
flow. This includes special handling of function calls and jump instructions to ensure that
all possible execution paths can be traced.

(1) Instruction Extraction Phase: For the set of function start positions and correspond-
ing end positions obtained from debug information, we extract instruction sets of length k

Informatics 2025, 12, 67

7 of 24

from the start position. If the instruction length in the current (b, f) is less than k, we use
all instructions in (b, f) for training. Specifically, for each function’s (b, f), we extract its
first k instructions I[b : b + kJ; if the instruction length of (b, f) is less than k, we retain all
information from (b, f).

(2) Prefix Tree Generation Phase: Based on the characteristics of prefix trees described
earlier, we construct a prefix tree using the instruction sets produced in Phase 1. A path
extending from the root node to a leaf node represents an instruction sequence. Here, k
represents the maximum length of instruction sequences. In actual analysis, the instruction
length may not equal k; if the length is less than k, we directly use the actual length for
training, while if it is greater than k we use k for training. During experimentation, instruc-
tion sequences undergo normalization operations. This normalization enables matching
operations to handle similar but non-equivalent instructions, effectively improving analysis
precision and recall rates. For instruction sequences of length k, we generate a prefix tree as
shown in Figure 1, where each non-root node v represents an instruction in the sequence.
The execution process of a function’s instructions can then be represented as the instruction
sequence from the root node to v.

””””””” Function Identification . _______, .. ______________. Function Similarity r--------——————-,

I I
I I
: : movq %rdi, %rbx ! !
| | movabsq $.L0, %rdi : :
! ' movb 50, %al . [] !
— L —_ J.
: : callg printf i i i 2 |
‘ X novq %rbx, -80Crbp) ‘ . ‘ : x : ‘ |
I I “ee
[I I I

Figure 1. Fuzzy matching analysis for code similarity framework.

(3) Weight Calculation Phase: In specific experiments, we divide the function set into
training and testing sets. By assigning a weight to each prefix tree node in the training set,
we can determine whether the statement sequences (maximum k instructions) generated in
Phase 2 represent function entry points. The weight calculation process is as follows: for
the entire training set D, if a node in the prefix tree is not a function entry point in D then
we store it in set D_; otherwise, we store it in set D;. We then record the number of actual
function starts in D . Note that errors may occur in this process; for example, an instruction
sequence corresponding to a path in the prefix tree may not be an actual function start,
necessitating a reduction in weight. We set the node weightas w = D, /(D4 + D_).

3.1.2. Function Similarity with Fuzzy Matching

Dynamic programming (DP) is a mathematical method for solving multi-stage de-
cision optimization problems, with its theoretical foundation derived from Bellman’s
optimality principle. DP decomposes complex problems into interconnected subproblems
and employs either bottom-up recursive methods or top-down memo-ization strategies for
resolution. Unlike traditional divide-and-conquer approaches, DP-processed subproblems
typically exhibit overlapping characteristics. This requires maintaining state transition
tables in order to avoid redundant computation, resulting in significantly enhanced al-
gorithmic efficiency. In DP, “programming” actually refers to the table-filling process, in
which solutions to subproblems are systematically stored in a multi-dimensional state
space to facilitate subsequent computational queries.

The longest common subsequence (LCS) algorithm is crucial for sequence similarity
measurement, identifying shared non-contiguous element sequences across multiple se-
quences. Distinct from the longest common substring (which requires continuity), the LCS
permits elements to exist non-contiguously in the original sequence, making it particularly
applicable to instruction sequence similarity analysis. From Equation (1), the LCS problem
can be efficiently solved through DP, as shown below.

Informatics 2025, 12, 67 8 of 24

0, ifi=0o0rj=0
LCS(X;—1,Yj-1) +1, ifX; =Y, (1)
max(LCS(X;, Yj-1), LCS(Xi-1,Y))), i Xi #Y;

Breadth-first search (BFS) is a graph traversal algorithm extended to control flow
graph (CFG) traversal in function similarity analysis. This study proposes an enhanced
BFS algorithm that expands the search space layer by layer from the CFG entry vertex,
generating mapping relationships and similarity scoring matrices between basic blocks
by matching control flow structures with candidate functions. During the matching pro-
cess, we employ instruction sequence normalization strategies to standardize instruction
sequences within basic blocks through semantic equivalence transformations, which elim-
inates surface differences caused by compiler optimizations, instruction reordering, and
other factors. Subsequently, we utilize the aforementioned LCS algorithm to calculate
the similarity of normalized instruction sequences. In this way, we obtain the maximum
common subsequence in execution paths between target and candidate functions, thereby
establishing initial mapping relationships between basic blocks.

To further enhance the precision and efficiency of function matching, this research
introduces the Fuzzy Matching Enhanced Neighborhood Search (FMENS) algorithm. Based
on initial basic block mappings, this algorithm expands the search space outward using
control flow dependencies while tolerating a certain degree of structural variation, thereby
enabling identification of function variants that have undergone code refactoring, local
modifications, or optimizations. FMENS iteratively updates the similarity matrix, ulti-
mately generating global similarity scores between functions that comprehensively consider
instruction semantics, control flow structure, and data dependency relationships, which
provides a reliable similarity measurement foundation for binary code analysis.

3.1.3. Semantic Similarity Calculation

Let us assume that the state s; € Sp of program P at a specific time point (where Sp
represents the set of all possible states) can be represented as a triplet (pos;, x;, w;), where
pos; denotes the position of variable x; at that moment and w; represents the current value
of variable x;. A program’s execution trace T € S} is a sequence of states sg, sy, ..., sy,
while the set of all possible execution traces constitutes Ep. For trace T, we use init(7) and
term(T) to represent its initial and terminal states, respectively.

We denote the mapping relationship between two states s, and s;, as p, which maps
variable x, in s, to variable x, in s}, written as x, — x;,. If the condition s, (1) = s,(v) is
satisfied for all mapping pairs (1,v) € p, then s, and s, are considered equivalent under
mapping p, denoted as s, =, s;,. For two execution traces 7, and 7y, if they are equivalent
under mapping p, we denote this as 7, =, 1,. For a program pair (P;, P,), the set of all
possible variable mapping relationships is denoted as M(P,, Py).

Definition 1. Code Fragment Equivalence: For two code fragments C, and Cy, they are equivalent
under mapping p, i.e., Cg =p Cyp, if and only if: (1) each input in C, has a corresponding input in
Cy, and (2) for any execution pair (T, 7y) € (Ca, Cp), if they are equivalent at the input points
(Ta =p T), then the following condition is satisfied:

V(ing, iny) € (p N (inputs(Cy) X inputs(Cy))) : init(1,) (ing) = init(7,)(iny).)

Definition 2. Code Fragment Similarity: For two code fragments, their similarity is defined as the
proportion of the maximum number of matching variables under a mapping relationship, namely,
Equation (3):

Informatics 2025, 12, 67

9 of 24

o max Y(t,) € (Cy, Cp) : Ta =5 T
Similarity(C,, Cy) = 2ot Z)m(caﬂ mZen) ©
a

The significance of the above similarity formula lies in its direct computation of simi-
larity based on the core semantics of code fragments rather than merely relying on output
value comparisons. This method reduces potential errors associated with judging similarity
solely through output values, thereby enabling the generation of meaningful similarity
scores for code that appears unrelated on the surface but is semantically similar. For states
sqa and sy, the proportion of matching values in s, is defined as Similarity(s,,s,) = |"];:‘t| ,
where |0,,¢| represents the size of the optimal mapping that makes s, and s; equivalent,

i.e., the maximum mapping satistying s, =, Sp-

3.2. Training Information Formatted Using ProtoBuf

To enhance network transmission efficiency during model encoding and decoding pro-
cesses, we implement Google Protocol Buffers (ProtoBuf) as our serialization format. Com-
pared to XML and JSON, ProtoBuf offers significant advantages: (1) ProtoBuf-serialized
data typically require 20-100% less space than JSON, substantially reducing network band-
width consumption; (2) the binary format of ProtoBuf enables parsing speeds 20-100 times
faster than JSON, minimizing model latency; (3) data structures defined through .proto
files provide rigorous type checking, reducing runtime errors.

Our implementation utilizes the ProtoBuf message structure shown below.

syntax = "proto3";

message Modellnput {
repeated float instruction
_features = 1 [packed=true];
int32 sequence_length = 2;
int32 feature_dimension = 3;

message ModelOutput {
repeated float embedded_
representation = 1 [packed=true];
repeated float attention
_scores = 2 [packed=true];
float loss = 3;

This structure enables efficient serialization and transmission of model input features
and output representations, leading to significantly improved system throughput and
response times, particularly in distributed training and inference scenarios.

Following the design improvements in the transformer model described earlier, this
section discusses the use of ProtoBuf data format to transfer data across different compila-
tion architectures and various models. Utilizing ProtoBuf formatted training information,
ProtoBuf acts as a “translation layer” and “bridging technology” within the firmware
vulnerability detection framework. It addresses the issue of inconsistent code represen-
tation caused by architectural differences, solving the core problem of cross-architecture
instruction representation. This enables code compiled from different architectures but
from the same source code to be compared and analyzed through a unified data structure.

Informatics 2025, 12, 67

10 of 24

In this section, we introduce a method for cross-architecture basic block embedding
based on the transformer architecture, which includes an encoder and a decoder. To better
handle and standardize instruction data, we propose a ProtoBuf-based instruction repre-
sentation standardization framework. The details of this framework and its application in
cross-architecture embedding are discussed below.

3.2.1. Introduction to ProtoBuf

ProtoBuf [29], led by Google, is a structure suitable for network transmission that
facilitates the serialization and deserialization of structured data. This structure boasts high
portability and is applicable across various programming languages, operating systems,
and development platforms; additionally, its serialization mechanism features scalability.
ProtoBuf can be compared to Extensible Markup Language (XML) and JSON, but offers
significant advantages in terms of the size of information as well as the efficiency of
serialization and deserialization operations. It is smaller, more efficient, and simpler to
use for the same amount of information. For users, it only requires building the structure
of the data to be transmitted one time at both the sending and receiving ends, including
the types, order, hierarchy, and nesting. Then, using compilation tools, the constructed
data structure is compiled into source code and integrated into the project, allowing for
easy serialization, deserialization, or reading and writing of various data streams. This
operation is not restricted by any programming language.

The advantages of ProtoBuf are primarily reflected in the efficiency of data serialization
and high flexibility during development and maintenance. For example, a data structure
defined in ProtoBuf is several times smaller than one in the more commonly-used XML
format, and can be serialized tens of times faster. Its flexibility is demonstrated by the fact
that updates to the data structure can be made without breaking existing older programs.

3.2.2. ProtoBuf Instruction Representation Framework

Initially, we defined a ProtoBuf message format to standardize the representation
of instructions. This not only aids in model training and inference but also enhances
the efficiency of data storage and exchange. The specific ProtoBuf message definition is
shown below.

syntax = "proto3";
package instruction;
// Standardized representation
// of an instruction
message Instruction |{
// Architecture of the
// instruction ,
// e.g., "x86" or "ARM"

string architecture = 1;

// List of operands

repeated string operands = 2;
// Opcode

string opcode = 3;

// Positions of the instruction
// within the basic block
repeated int32 positions = 4;

Informatics 2025, 12, 67

11 of 24

3.2.3. Encoder

As shown in Figure 2, the encoder receives instruction embeddings as input, which
are obtained through word embedding and positional encoding. The encoder consists of
six enhanced transformer blocks, each including a multi-head self-attention layer and a
feed-forward neural network layer.

N6 W6 {w ARM Architechure MIPS Architechure X86 Architechure Other Architechure
Firmware Server Firmware Firmware Firmware Firmware

T T
l ProtoBuf offers smaller size and higher efficiency compared to XML and JSON l
v v d

Google ProtoBuf Data Exchange Layer ("Translation Layer" and "Bridging Technology")

Firmware Database Performance tested on
| NS-3 network simulator

r— — — — — 1 r-—— - - -2 .- — — - — - - a

_— Instruction ‘Cenificate | ‘Cross-Architecture Vulnerability‘

Embedding Model ‘ Authentication Scheme Detection Model
. L - - = = — . L - - - - = = —]

\
Decompiling o] L
Figure 2. Cross-architecture firmware vulnerability detection model based on ProtoBuf.

The multi-head self-attention layer constructs the basic block embedding representa-
tion by capturing complex relationships between instruction embeddings. Instruction em-
beddings are first linearly transformed through three learnable weight matrices Wg, Wi, Wy
to generate the matrices Q, K, V. These matrices are then divided into / heads, each produc-
ing Q;, K, V;. Using the dot-product attention mechanism, each head computes attention
scores A; while scaling the dot products to avoid gradient issues, ultimately producing the
output Z; of the multi-head self-attention layer.

3.2.4. Decoder

The structure of the decoder is similar to that of the encoder, consisting of six analogous
transformer blocks. Through the encoder—decoder attention mechanism, the decoder
accesses vector representations of the input sequence from the encoder and predicts the
next instruction in the output sequence.

3.2.5. Training and Prediction

In cross-architecture embedding operations, an X86 encoder is initially trained, fol-
lowed by parameter adjustments to accommodate different architectures. During the
training phase, instruction sequences from the X86 architecture serve as input for the
encoder, while instruction sequences from the ARM architecture are used as input for
the decoder. This approach allows the model to learn how to map instructions from one
architecture to another.

By integrating this ProtoBuf-based instruction representation with the transformer
architecture, we effectively implement cross-architecture basic block embedding, thereby
enhancing the model’s generalization capabilities and its ability to handle complex tasks.

3.3. ProtoBuf Structure-Based Pseudonym Certificate Verification Method for Vehicular Networks

Security agencies face a critical issue in current IoV network applications, particularly
in scenarios such as multi-level interchanges where large numbers of vehicles converge.
From Figure 3, they need to ensure that the efficiency of pseudonym certificate verification
meets or exceeds 1000 verifications per second. To address this, our research proposes a
pseudonym certificate generation and verification scheme based on the protocol buffer (PB)
structure, leveraging its widespread industrial use to test whether the required verification
efficiency can be achieved.

Informatics 2025, 12, 67

12 of 24

Remote Clouds

Vehicle-side | SKoi, PKoi
E‘g @ Initialization Scheme
@(> Register information Remote Clouds Authorization Center,
x
\

RSU Edge Servers

\
(2) et S(AJ) \\\\3‘4% @(‘ Register information
=] == 77 iy
T () (»)/ A
hl IIA\\\ ’.A N (())
<> ProtoBuf Format Data (((~Tw, PKR, R/\D/‘ .
Vehicle-sides X # Wireless Channels @ - ProtoBuf Format Data
”Q ?Q @Q T - Dl @ <> Communications by public key
Lo e e
) = Ry

Figure 3. Certificate authentication scheme based on protocol buffers for enhancing data serialization
efficiency and development flexibility.

3.3.1. Initialization Phase

The purpose of the initialization phase is to generate the initial data required for
subsequent processes, such as public-private key pairs used by various communication
entities (e.g., different levels of trust centers), certificate revocation lists (CRLs), and related
identity markers. Vehicles register their information and obtain public keys from multi-level
certificate authorities (CAs).

During the initialization phase, vehicles organize their registration messages and
upload them via the nearest roadside unit (RSU) using a trusted wired or wireless network
to the main trust authority (MTA). Subsequently, the MTA verifies the vehicle information,
saves the records either in the cloud or locally, and generates the public key certificate for
the vehicle.

The CA within the MTA generates a random private key, which becomes the system’s
master key; the corresponding public key is then generated from this private key. The CA
initializes the CRL and distributes the CA’s public key to vehicles and RSUs in the network.
Vehicles use the CA’s public key to compute their own public—private key pairs.

After the initialization phase, vehicles have obtained the CA’s public key and generated
their own public—private key pairs. Cascading from the trust authorization center (STA)
and RSUs, vehicles also receive regional symmetric keys.

3.3.2. Pseudonym Certificate Generation Phase

This phase is designed to ensure the privacy of data when vehicles participate in
communications. When a vehicle intends to engage in subsequent vehicle-to-vehicle (V2V)
communications in IoV networks, the vehicle terminal enters this phase. The vehicle sends
a pseudonym certificate request to the CA, which includes the vehicle’s unique identifier
(ID) and the vehicle’s public key, then encrypts these using the CA’s public key and sends it
to the CA. Upon receipt, the CA decrypts the request using its private key to obtain the true
identity of the terminal vehicle and verify this identity. The vehicle’s request information is
formatted as follows:

Request,;_,ca = Epk,, (IDy;, PKy;) (4)

where ID is the vehicle’s electronic registration identification (ERI) and PK is the ve-
hicle’s public key. After decryption, the CA obtains the vehicle’s true identity and
conducts verification.

If the verification is successful, the CA generates a pseudonym ID and a pseudonym
certificate for the vehicle along with an expiration time and then randomly generates a
private key for the pseudonym, from which the public key is computed. If verification fails,
this may indicate that the vehicle has previously engaged in violations or malicious activi-
ties and its certificate has been revoked, necessitating resolution through the transportation
management authority.

Informatics 2025, 12, 67

13 of 24

The main trust authority (MTA) maintains a list in which the key is the vehicle termi-
nal’s real identity and the value is its corresponding set of pseudonym certificate identities.

After a specified number of pseudonyms are generated, they are encrypted using the
vehicle’s public key and sent to the corresponding vehicle terminal.

The response message from the CA to the vehicle terminal is formatted as follows:

Messageca—vi = {PIDy,,, Certpy,,, PKpy, }, K € [1, M] (5)

where M is the predetermined number of pseudonym certificates. Upon receiving the mes-
sage, the vehicle terminal decrypts it using its own private key and stores the pseudonym
information locally.

3.3.3. Vehicle-to-Vehicle Secure Communication Phase

This phase is designed to ensure the security of data during vehicle-to-vehicle (V2V)
communications. After obtaining pseudonym certificates, vehicle terminals within the
same certification area validate the pseudonym certificates through the subordinate trust
authority (STA) in order to ascertain the vehicle’s true identity. They also check the
revocation status of the vehicle’s certificate to determine whether the vehicle is eligible to
receive communication keys. Subsequently, the STA issues keys for V2V communication.

Vehicles certified within the same certification area possess identical communication
keys. During communication, symmetric encryption is employed to maintain the security
and integrity of the data.

3.4. Certificate Authentication Communication Data Structure Based on ProtoBuf

In the final stage of the architecture process for [oV communication, vehicles transmit
Basic Security Message (BSM) information. In 2013, the IEEE completed the WAVE protocol
stack based on wireless networks for inter-vehicle communication, which consists of IEEE
802.11p, IEEE 1609 series protocols, and the SAE J2735 standard [30]. SAE J2735 specifies
the contents of vehicle BSMs, including vehicle ID, operational status, speed, direction of
travel, etc. The messages transmitted between onboard units (OBUs) and roadside units
(RSUs) are the basic units of application-layer data packet transmission, and are composed
of different categories of message bodies.

3.4.1. Key Negotiation Process Design

Key negotiation is used for parties A and B to jointly establish a session key.

In this study, the negotiated key is primarily the regional symmetric key for the final
phase of the entire security architecture process. The key negotiation process must satisfy
several characteristics:

First, the key negotiation process should coexist with the encryption negotiation
process, both of which are essential components of key negotiation.

Second, the negotiated key should have a validation mechanism based on an expiration
time, ensuring that the negotiated communication key is regularly and forcibly replaced.
In the same communication area, after a vehicle obtains the regional symmetric key, the
negotiated key will expire after a specified time and cannot continue to be used. This
prevents vehicles with revoked certificates from participating in V2V communications and
posing a security threat. Additionally, the entire key negotiation process itself should have
related threshold times as the basis for timeout judgment to ensure that the negotiation
process is not too lengthy. If the negotiation process itself is prolonged, this likely indicates
an error or malicious attack, in which case the process should be considered failed and
needs to be renegotiated.

Informatics 2025, 12, 67

14 of 24

Lastly, to prevent leakage of information in communications, the data exchanged
between the parties during the negotiation process should not appear in plaintext. Ne-
gotiation should proceed using a scheme similar to asymmetric key systems, and the
encrypted data should include an identity marker to verify the initiator as the genuine
communicating party.

3.4.2. Implementation of Certificates Based on PB Structure

The generation process for certificates using the PB structure can be divided into
three parts.

First, according to the content structure of certificates in Chapter 3, each part is written
in sequence and hierarchy into the corresponding .proto file, with each field and its type in
the certificate edited into the .proto file following the PB syntax.

Second, the ProtoBuf toolkit is used to compile the .proto file written in the first part.
This file defines the hierarchical structure and content framework of the certificate. These
data structures serve as the format agreed upon by the communicating parties and are
intended for software developers and business logic, which dictate the format of these data
structures; however, this format is not particularly friendly for network transmission and
storage, as it requires serialization, deserialization, and read-write operations of structured
data related to the business logic. ProtoBuf provides corresponding interface code for
these operations. Through the “protoc’ compiler, our .proto files can be transformed into
corresponding data structure operation interfaces.

Interface code can be generated with the following command: protoc —1 =
$SRC_DIR — —cpp_out = DST_DIRSRC_DIR/xxx.proto.

The third part involves calling the above-generated interfaces in the project to imple-
ment serialization, deserialization, and read—write operations. The .proto files from the
first part are compiled by ‘protoc’ in the second part into corresponding interface code files,
which appear as header files in C++. These generated interface files are incorporated into
the project, after which the data structures defined in the .proto files can be used, such as
for writing, reading, serializing, and deserializing.

4. Experimental Results and Analysis
4.1. Experiment Setup

Our experimental framework is structured into three distinct phases. The first phase
focuses on developing cross-architecture basic block embeddings. We implemented Python
scripts using Binary Ninja to extract instruction sequences from attributed control flow
graphs (ACFGs), followed by neural network model construction using PyTorch (Python3)
to achieve effective embedding of cross-architecture basic blocks. We selected three es-
tablished baseline models for comparative analysis: Gemini [12], DeepVSA [31], and
PalmTree [7]. The experiments were executed on a high-performance cloud server equipped
with a 42-core CPU, 240 GB RAM, three NVIDIA RTX 3090 GPUs (each with 24 GB VRAM),
and 100 GB SSD storage. The software environment consisted of PyTorch 1.10.0 and
CUDA 11.3.

The experimental requirements included C-V2X mode4 communication capabilities
and an OpenSSL-based cryptographic environment. We initially established an IoV network
communication environment based on NS-3 [11], employing Ubuntu 18.04 as the Linux
development platform due to its stability. The simulation experiments were conducted
on the NS-3 simulator, with the simulation scenario consisting of a 200-m unidirectional
roadway populated with ten communication terminal nodes (nine IoV terminals and one
roadside unit) uniformly distributed along the roadway. These nodes maintained constant
velocities while traveling forward, with the roadside unit (RSU) positioned in the central

Informatics 2025, 12, 67

15 of 24

region of the roadway. The communication methodology implemented LTE-based C-V2X
mode4 communication protocols.

For our comparative analysis, we developed both baseline embedding models and our
proposed FirmPB framework in PyTorch. While traditional BERT architectures typically
employ twelve layers, twelve attention heads, and 768-dimensional hidden states, our
FirmPB implementation utilizes a more streamlined configuration with twelve layers, eight
attention heads, and 64-dimensional hidden states to optimize computational efficiency
and minimize training resource requirements.

To thoroughly evaluate our methodological contributions, we created two variants of
our framework: the complete FirmPB implementation incorporating our novel assembly
instruction call graph algorithm, and a reduced version (FirmPB-W/o-G) that omits this
graph generation component, allowing us to isolate and quantify its impact.

Our evaluation leveraged the publicly available MIRROR dataset [8], comprising
source code from five prominent C/C++-based open-source projects: Binutils 2.30, Coreutils
8.29, FFmpeg n3.2.13, OpenSSL 1.1.1b, and Redis 5.0.5. Using the LLVM [32] compiler
infrastructure, we generated corresponding x86 and ARM assembly code datasets from
these source repositories.

Experimental evaluation was conducted on a high-performance computing environ-
ment running Ubuntu 18.04 and featuring an Intel Xeon E5-2683 V4 processor, dual GeForce
RTX 3090 graphics accelerators, and 124 GB system memory. The FirmPB pretraining phase
utilized 128,000 randomly selected sample pairs from our compiled ARM and x86 assembly
datasets. We initialized our model using the “bert-base-uncased” pretrained weights from
Hugging Face [16] and conducted training over 40 epochs, focusing on sentence seman-
tic equivalence objectives. As depicted in Figure 4A, the model successfully converged
on the cross-architectural (x86/ARM) basic block equivalence task within this training
regime. Subsequent evaluations of downstream task performance were conducted using
this optimized cross-architecture instruction embedding model.

T
— 1 1.04] v]
—a— Training Loss 0.834 0841 0881 0.921 0.937] 400

4— Test Loss 0.890.724 0725 V H 200]

0.6 4 / |l
200 N

3001 0.4 / |
7024 / 100 -]

500

400

200] /] 358 44.6
0.0 0 AN
5 10 15 20 25 30 35 40 ont™Sttuc, Wor, Asn. Gey Pam im LSTM BLLSTM FimPB
0 5 10 15 20 25 30 35 40 o : X X
Ne-p, o CI/O"?[/QZ?VeCm?Vece’"/H/ /nr,ee/bg i irm
A B C

Figure 4. (A) Training and test loss, (B) AUC values of Gemini, and (C) storage space of trained model.

4.2. Performance Evaluation of Model on Downstream Tasks
4.2.1. Cross-Architecture Instruction Embedding for Firmware Vulnerability Detection
Using ProtoBuf Bridging Technology

In implementing cross-architecture instruction embedding, we first constructed stan-
dardized vocabulary repositories for both X86 and ARM architectures. Although machine
instructions consist of mnemonics and operands, the diverse representations of hexadec-
imal address variables pose challenges to comprehensive vocabulary coverage during
training. To mitigate potential out-of-vocabulary (OOV) issues, we devised an instruction
normalization preprocessing pipeline: (1) immediate values were uniformly replaced with
the IMMYV identifier; (2) hexadecimal addresses such as 0x3402c8 were converted to AD-
DRESS; (3) variable references were standardized to VAR; (4) function invocations were
represented as CALL; (5) register references were systematically normalized according to a
classification framework, with general-purpose 64-bit registers designated as reg_gen_64
and register pointers as reg_pointer.

Informatics 2025, 12, 67

16 of 24

After generating instruction embeddings, we applied an aggregation algorithm to
integrate instruction sequence vectors into basic block representations. Concurrently,
we leveraged the BERT pretrained models within the PalmTree framework to separately
construct instruction embeddings for ARM and X86, obtaining basic block representations
through identical aggregation functions. This dual-pathway design enabled us to evaluate
the efficacy of ProtoBuf-based cross-architecture embedding by computing vector distances
between basic block embeddings produced through both methods. The training loss and
validation accuracy curves presented in Figure 4A demonstrate that performance metrics
reached convergence after 20 iterations.

Figure 4B depicts the results of architecture-independent training, clearly showing that
without ProtoBuf bridging technology, basic block embeddings from different architectures
occupy distinctly separate vector subspaces. To further validate our ProtoBuf-based unified
representation approach for cross-architecture analysis, we randomly selected 50 pairs of
basic blocks with identical source code but different compilation architectures as positive-
anchor sample pairs, quantified their similarity in embedding space using Euclidean
distance, and calculated the distance variations between 50 negative samples and the
anchor points. The results provide compelling evidence that our methodology effectively
bridges semantic representations across different architectures, establishing a reliable
foundation for cross-architecture firmware vulnerability detection.

4.2.2. Instruction Search Evaluation

We randomly selected a set of untrained assembly instruction basic blocks, with x86
and ARM samples each occupying 50%. We computed the embedding for each basic block
(instruction sequences with only one entry and one exit) by averaging the instruction
embeddings within. Given a basic block, we can find semantically equivalent basic blocks
based on the cosine distance between two basic block embeddings. As shown in Figure 5A,
we present the basic block search results using x86 basic blocks to search ARM instruction
basic blocks and vice versa within the same ARM or x86 architecture. We plotted the ROC
(receiver operating characteristic) curves for basic block search using embeddings from
Instruction2Vec [33], Word2vec [19], Asm2Vec [18], PalmTree [7], and FirmPB.

1.0
[} Q
+5 08 ©
— = =
2 2 Insiruction2Vec g
= =064 ’ === one-hot 5
@ @a o
o . 8 === Asm2vec a
2 06 = |nstruction2Vec © - —- word2vec ©
5 : PalmTree S 04 -—= Gemini 2
E 05 — — word2vec = PalmTree = LSTM
044 ==== Asm2Vec —— FirmPB-W/o-G Bi-LSTM
= FirmPB 024 — FimPB 02 — FimPB
03~ r r T T T T T T T T T ; : T T T
00 02 04 06 038 10 00 02 04 06 08 1.0 00 02 04 06 08 10
A: ROC curves for Basic Block Search B: ROC curves of Gemini C: Different Models ROC curves of Gemini

Figure 5. Experiments on downstream task.

The ROC curves in Figure 5A-C demonstrate significant differences in embedding
performance across various models. Figure 5A illustrates that the FirmPB model substan-
tially outperforms traditional approaches such as Instruction2Vec, word2vec, Asm2Vec,
and PalmTree in basic block search tasks. The ROC curve’s position closer to the upper
left-hand corner indicates superior balance between true positive and false positive rates.
This superior performance can be attributed to FirmPB’s enhanced capability to capture
semantic features of basic blocks, whereas traditional models exhibit limitations when
processing complex structures in firmware binary code.

Figure 5B,C further validates FirmPB’s advantages. In Figure 5B, FirmPB achieves
higher detection accuracy within the Gemini framework compared to other embedding
methods, particularly when contrasted with its FirmPB-W /o-G variant that lacks graph

Informatics 2025, 12, 67

17 of 24

structural information. These results demonstrate the critical importance of integrating
graph structures for model performance. Figure 5C confirms FirmPB's significant advan-
tage over conventional sequence models such as LSTM and Bi-LSTM, likely because FirmPB
is better suited for handling nonlinear control flows and data dependencies in firmware
code. This effectively reduces false positive rates while maintaining high true positive rates

From the ROC curves, it is possible to intuitively observe the ranking of area under
curve (AUC) values for different embedding schemes. It can be seen that (1) word2vec again
performs the worst; (2) the manually designed Instruction2Vec embedding outperforms
even the automatically learned word2vec; (3) Asm2Vec and PalmTree perform quite well,
but still lag behind FirmPB; (4) our proposed FirmPB instruction embedding model achieves
better AUC than other baselines, showing consistent performance improvement.

4.2.3. Similarity Analysis of Instruction Embedding Vectors

In this study, we conducted a comparative evaluation of various instruction embed-
ding methods and their collaborative effects using the Gemini model. The evaluated objects
include Instruction2Vec [33], word2vec [19], Asm2Vec [18], FirmPB-W /o-G, and the com-
plete FirmPB. We also introduced one-hot encoding combined with the embedding layer
as a baseline method (labeled as “one-hot”) while using the original Gemini basic block
features as a control group (labeled as “Gemini”).

As shown in Figure 4B, although Gemini demonstrated high AUC values in its original
research, this might be attributed to overfitting phenomena resulting from data homogene-
ity, as both the training and testing sets consisted of OpenSSL code compiled by LLVM [32]
under identical architectures. To comprehensively examine the model’s adaptability to
heterogeneous data, we constructed a more challenging testing environment by utilizing
the LLVM compiler to process source code from Binutils 2.30, Coreutils 8.29, FFmpeg
n3.2.13, OpenSSL 1.1.1b, and Redis 5.0.5, creating a diverse test set spanning both the x86
and ARM architectures.

Figure 4B presents the AUC performance of Gemini when using inputs generated by
various models. Based on the experimental results, we derive the following key findings:

(1) Despite Gemini’s impressive performance in the original literature, its generalization
effectiveness is significantly insufficient in a novel data environment.

(2) Artificially designed embedding methods (including Instruction2Vec and one-hot
vectors) perform poorly, indicating that manual features may excessively depend on
specific application scenarios.

(3) FirmPB maintains excellent performance even when faced with test sets drastically
different from training data, surpassing other solutions. This demonstrates that
FirmPB can significantly enhance the general adaptability of downstream tasks.

(4) All three pretraining tasks contribute to FirmPB's final effectiveness. Notably, the
complete FirmPB exhibits distinct advantages compared to its simplified version
FirmPB-W/o-G, which experiences a decrease in performance to a level similar to
Gemini (as shown in Figure 5B). This indicates that FirmPB achieves superior instruc-
tion embedding effects compared to traditional methods through its unique assembly
instruction relationship generation algorithm.

4.3. Communication Cost of Vehicle-Side and RSU Trusted Communication Scheme

In our simulation, we analyzed the delay overhead introduced by the scheme across
four distinct phases. First, the initialization phase encompasses the time required for the VA
to generate identity marks and public—private key pairs for vehicle terminals and RSUs as
well as the blockchain storage of these credentials. Second, in the pre-communication phase,
vehicle terminals retrieve regional RSU public keys and both parties submit detection keys

Informatics 2025, 12, 67

18 of 24

to the blockchain for consistency verification. Third, the symmetric key negotiation phase
between vehicle terminals and RSUs utilizes asymmetrically encrypted and signed random
numbers that vehicle terminals decrypt with their private keys. Fourth, the firmware
verification phase involves symmetric key encryption and decryption operations.

The detailed time consumption statistics across these phases are presented in Table 2.
Our results show an average total overhead of approximately 40-50 milliseconds. Given
that vehicle communication applications typically require delays under 50 milliseconds,
we evaluated our scheme against the five business scenario categories defined by interna-
tional IoV networking organizations and 3GPP [34] specifications (Table 3). The findings
demonstrate that our trusted communication scheme’s approximately 50-millisecond delay
satisfies the performance requirements for most VANET application scenarios.

Table 2. Delay testing of the four parts in the trusted communication scheme.

Times Igl:;ilz:t(l:)n Generate Pk/Sk (s) Com];r}l, u;lic(;;;lons EIE::;‘:;T;:S) Total Delay (s)
1 0.000301 0.006618 0.000425 0.041301 0.048645
2 0.000271 0.003636 0.000586 0.052277 0.05677
3 0.000266 0.004524 0.000625 0.0460287 0.0514437
4 0.000628 0.004308 0.00062 0.0410363 0.0465923
5 0.000291 0.005184 0.000441 0.0210282 0.0269442
6 0.000301 0.005001 0.000402 0.0390221 0.0447261
7 0.000297 0.004869 0.000221 0.0380332 0.0434202
8 0.000311 0.004422 0.000441 0.040233 0.045407
9 0.000456 0.004367 0.000543 0.042299 0.047665
10 0.000324 0.003635 0.00045 0.033361 0.03777
avg. 0.0003446 0.0046564 0.0004754 0.03946195 0.04493835
Table 3. Reliability testing in different application scenarios.
Scenario Effective Absolute Relative Maximum Receiving
Range/(m) Speed/(km/h) Velocity/(km/h) Latency/(ms) Reliability
suburb 200 50 100 100 90%
highway1 320 160 280 100 90%
highway?2 320 280 280 100 80%
NLOS/City 100 50 100 100 90%
Urban intersection 50 50 100 100 95%
Campus/business district 50 30 30 100 90%
Emergency collision 20 80 160 20 95%

The implementation leverages protocol buffers (PB) for certificate authentication,
delivering significant advantages over traditional serialization methods. This approach
substantially improves data serialization efficiency, thereby reducing processing overhead
and network transmission times. Additionally, the PB structure provides enhanced de-
velopment flexibility and maintainability through its strongly-typed schema definition,
version compatibility, and cross-platform support. These benefits are particularly valuable
in the dynamic VANET environment, where efficient message processing and adaptable
system architecture are critical. Consequently, our PB-based secure communication privacy
scheme not only meets the stringent performance demands of vehicular networks but also
offers superior development efficiency and system scalability.

4.4. Security Evaluation of Trusted Communication Scheme

For implementation on memory-limited IoV hardware, we investigated LSTM architec-
tures as potential replacements for BERT in instruction embedding generation, motivated by
their reduced memory requirements and enhanced convergence efficiency [13,14]. Our eval-

Informatics 2025, 12, 67

19 of 24

uation encompassed instruction retrieval experiments and vector similarity analysis across
downstream applications. The storage footprint comparisons are visualized in Figure 4C.
Despite Bi-LSTM and standard LSTM configurations demonstrating storage advantages
relative to FirmPB [13-15], their performance metrics reveal significant shortcomings. The
results presented in Figure 5C indicate substantial deficiencies in ROC measurements, with
performance falling below acceptable thresholds compared to FirmPB-based approaches.
This performance gap precludes direct deployment of these lightweight architectures for
on-vehicle firmware vulnerability assessment. Consequently, we developed a vehicle-to-
infrastructure communication framework as an alternative solution addressing current
technical limitations while fulfilling automotive network security requirements. The subse-
quent sections provide comprehensive security and performance analyses of our proposed
communication protocol.

To ensure the rigor of the security research in this study, the following security assump-
tions are made about the test environment. Regarding the environment, we assume that
the IoV network infrastructure is fully equipped, i.e., that the RSUs and security modules
are complete and have no hardware deficiencies. This security scheme prioritizes security
guarantees; any scheme process failures due to hardware reasons will disable inter-vehicle
communications or trigger other security workflows.

First, we assume that the wired or wireless connections between trusted authorities
in this paper are managed by dedicated personnel and are highly trusted, serving as trust
anchors. Second, we assume all vehicles undergo relevant departmental inspections when
entering the communication environment, with no illegal hardware modifications. Finally,
we assume that all participating vehicle-side and RSUs communicate following the de-
signed communication security and privacy scheme in this paper. To test the security of the
simulation scheme in this study, we investigated security threats in IoV network commu-
nications. Research shows there are five main types of vulnerabilities: (1) eavesdropping,
(2) impersonation, (3) tampering, and (4) repudiation (the fifth type, man-in-the-middle, is
excluded from this analysis).

(1) Inthe simulation, eavesdropping was tested by intercepting communication between
two vehicle nodes to determine whether the security scheme avoids such threats.
Simulations in NS3 showed that because communications between vehicles are en-
crypted regionally and messages are encrypted with the recipient’s public key when
sent, only the private key can decrypt them; thus even if intercepted, the encrypted
information cannot be directly read. Moreover, key negotiation in this scheme uses
blockchain to verify public keys instead of certificate validation, avoiding centralized
data tampering issues while skipping certificate verification steps.

(2) Impersonation is tested by falsifying the identity of a vehicle node during commu-
nications to determine whether the scheme prevents such threats. In this scheme,
vehicles first obtain certified public keys corresponding to their real identities from
the TA in CS. The blockchain-verified public keys are then used for communications.
Prior to sending, the sender encrypts a random number (agreed symmetric key) with
its private key. When an attacker impersonates a vehicle or RSU during ongoing
communications, the receiver performs decryption (signature verification) using the
stored public key and detect fakes via comparison against the blockchain. In addition,
falsified messages cannot be decrypted using the receiver’s public key.

(3) Tampering is tested by intercepting and altering messages. In this scheme, regional
encryption, signed messages, and authenticated entities prevent such threats. In
simulations, malicious third parties cannot obtain plaintexts to tamper with due to
lacking the regional symmetric key after intercepting encrypted messages.

Informatics 2025, 12, 67

20 of 24

(4) Repudiation is tested by denying sent messages in order to verify the scheme’s
capabilities. In this scheme, vehicle messages are digitally signed with the vehicle’s
private key and pseudonym certificates are logged with the administration entity,
allowing a lookup table to be queried in order to prove the sender and prevent
repudiation.

4.5. Scalability Comparison of Firmware Analysis Methods

We conducted a systematic comparison of three state-of-the-art firmware analysis
methods: FIRMRCA [35], POMP [36], and POMP++ [37], in Table 4. These methods
were selected based on their shared characteristics with FirmPB; all consider instruction
semantics, providing analysis results with high instructional value for analysts. POMP
performs backward taint analysis on core dump files and execution traces collected by
Intel PT [38] to precisely identify firmware analysis causes. POMP++ further enhances
POMP’s memory alias resolution capabilities by introducing value set analysis techniques.
Although these methods were originally designed for x86 Linux platforms, we have ported
them to the 32-bit ARM Cortex-M architecture to ensure fairness and scientific validity in
our evaluation.

Table 4. Performance Comparison of Firmware Analysis Methods Across Various Input Sizes (in

instructions).
Model 800 1600 3200 6400 12,800
FirmPB 35.44 s 76.26 s 150.79 s 300.34 s 630.26 s
FirmRCA [35] 43.78 s 122.70 s 348.12's 2.1h 4.7 h
POMP [36] 53.78 s 138.45 s 331.62s 1.8h 5.7h
POMP++ [37] 63.65 s 141.32 s 1.1h 31h 57h

To quantify performance differences, we randomly selected five test cases containing
over 180,000 instructions and calculated the average total time overhead. The experi-
mental results demonstrate that FIRMRCA and POMP exhibit clear exponential growth
trends as analysis depth increases linearly, while POMP++ shows polynomial-level growth
characteristics. In contrast, FirmPB displays only moderate time complexity growth as
the analysis depth increases. This significant performance difference conclusively proves
FirmPB’s stability and efficiency during the instruction embedding phase. By minimizing
the impact of unresolved memory aliases, FirmPB can efficiently perform fault localization
even with extremely long execution traces. This capability is particularly crucial in complex
firmware crash scenarios, where firmware analyses are often deeply embedded within
lengthy execution traces and can be difficult to quickly locate.

In the field of firmware disassembly analysis, fuzzy matching frameworks are widely
employed to identify similar code fragments across different binary files even when these
code segments exhibit variations due to compilation or optimization processes. These
traditional approaches primarily rely on techniques such as instruction sequence sim-
ilarity, control flow graph features, graph isomorphism algorithms, and edit distance
metrics. However, these conventional methods typically demonstrate exponential com-
plexity growth as analysis depth increases and face significant challenges when handling
unresolved memory aliases.

In contrast, the FirmPB approach proposed in this paper utilizes deep learning-based
semantic embedding methods, which demonstrate substantial advantages. The proposed
approach not only captures implicit semantic relationships between instructions but also
exhibits only moderate time complexity growth as analysis depth increases. Furthermore,
FirmPB demonstrates superior performance in addressing memory alias issues and presents

Informatics 2025, 12, 67

21 of 24

enhanced cross-architecture generalization capabilities, enabling comprehensive under-
standing of deep code semantics rather than merely identifying surface patterns. These
characteristics provide FirmPB with significant advantages in complex firmware analysis
tasks, particularly in vulnerability detection and firmware analysis scenarios.

4.6. Discussion on Balancing Accuracy and Efficiency

In firmware vulnerability detection, achieving an optimal balance between accuracy
and efficiency represents a critical challenge that warrants further exploration beyond
the current analysis. The ideal balance involves maximizing detection accuracy while
minimizing computational overhead and time consumption, which is particularly crucial
in resource-constrained IoV environments.

An ideal balance would enable real-time vulnerability detection with high precision,
allowing FirmPB to maintain its superior AUC performance (0.932) while operating within
the 50 ms latency threshold required for most VANET applications. This would allow for
comprehensive firmware security verification without compromising vehicle communi-
cation requirements. The integration of protocol buffers demonstrates a step toward this
balance by improving serialization efficiency; however, the relationship between model
complexity and detection performance requires deeper examination.

When this balance is suboptimal, several consequences emerge. Prioritizing accuracy
over efficiency (as seen with the full FirmPB implementation versus lightweight alterna-
tives) may result in systems that, while highly accurate, cannot operate within vehicular
timing constraints. This necessitates vehicle-to-infrastructure offloading solutions such
as those implemented in this study. Conversely, emphasizing efficiency at the expense of
accuracy (as demonstrated by the LSTM and Bi-LSTM models) produces systems with
performance falling below acceptable thresholds, creating dangerous security gaps where
vulnerabilities remain undetected despite timely processing. Our experimental results
clearly illustrate this tradeoff, showing that lightweight models achieve better efficiency but
exhibit substantial deficiencies in ROC measurements that preclude their direct deployment
for on-vehicle firmware vulnerability assessment.

5. Conclusions

This research presents an innovative solution to address critical challenges in firmware
vulnerability detection for embedded devices. The paper establishes a firmware vul-
nerability detection framework based on statistical inference and code similarity fuzzy
matching analysis within resource-constrained vehicular network environments, success-
fully achieving a balance between detection accuracy and computational efficiency. The
main contributions of this research can be summarized in three aspects. First, we develop a
normalized segmentation and semantic equivalence mapping mechanism for binary code
through dynamic programming and neighborhood search techniques. This effectively ex-
tracts similarity metrics for function execution semantics, resolving the accuracy limitations
of traditional instruction embedding methods that neglect program execution semantics.
Second, we innovatively introduce Google Protocol Buffers (ProtoBuf) as a serialization
format for inter-model data transmission, serving as a “translation layer” and “bridging
technology” within the detection framework. In addition, we propose a ProtoBuf-based
certificate authentication scheme that significantly enhances vehicular network communi-
cation reliability and data serialization efficiency. Finally, through secondary development
on the NS-3 network simulator, we construct a vehicular network simulation environment
to comprehensively validate the functionality and performance characteristics of the pro-
posed architecture. Experimental results demonstrate that the method proposed in this
research not only possesses resistance capabilities against common security threats but

Informatics 2025, 12, 67 22 of 24

also minimizes performance impact. This achievement holds significant implications for
enhancing firmware security in resource-constrained environments and provides a new
technical approach for vulnerability detection in embedded systems. Future research could
further explore the adaptability of detection methods across more heterogeneous platforms,
along with advanced semantic analysis techniques combined with deep learning to further
improve the accuracy and generalization capabilities of the detection framework.

Author Contributions: Conceptualization, X.F.; methodology, X.F. and K.H.; software, K.H.; valida-
tion, X.F,, YYW. and R.C,; formal analysis, X.F. and K.H.; investigation, Y.W. and J.Z.; resources, X.E.;
data curation, K.H. and R.C.; writing—original draft preparation, X.F. and Y.W.; writing—review and
editing, X.F, K.H. and J.Z.; visualization, K.H. and R.C.; supervision, X.E; project administration, X.E,;
funding acquisition, X.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The original data presented in the study are openly available at
https:/ /dx.doi.org/10.14722 /bar.2020.23002, accessed on 5 July 2025.

Conflicts of Interest: Xiyu Fang is employed by CATARC Automotive Test Center (Tianjin) Co.,
Ltd. and China Automotive Technology & Research Center Co., Ltd. and has not received funding
from each of these companies. CATARC Automotive Test Center (Tianjin) Co., Ltd., as a company,
is not involved in this research, and has no potential conflicts of interest related to the study itself.
China Automotive Technology & Research Center Co., Ltd., as a company, is not involved in this
research, and has no potential conflicts of interest related to the study itself. Kexun He is employed
by CATARC Automotive Test Center (Tianjin) Co., Ltd. and has not received funding from CATARC
Automotive Test Center (Tianjin) Co., Ltd. CATARC Automotive Test Center (Tianjin) Co., Ltd., as a
company, is not involved in this research, and has no potential conflicts of interest related to the study
itself. Yue Wu is employed by the University of Electronic Science and Technology of China and has
not received funding from the university. The University of Electronic Science and Technology of
China, as an institution, is not involved in this research, and has no potential conflicts of interest
related to the study itself. Rui Chen and Jing Zhao are employed by Dalian University of Technology
and have not received funding from the university. Dalian University of Technology, as an institution,
is involved in this research, and has no potential conflicts of interest related to the study itself.

References

1.

Zhao, J.; Wang, R. Fedmix: A sybil attack detection system considering cross-layer information fusion and privacy protection. In
Proceedings of the 2022 19th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON),
Virtual Conference, 20-23 September 2022; pp. 199-207.

Chen, R.; Younas, W.; Zhao, J. Firm-vehicle: Trusted communication enabled instruction embedding model for resource-
constrained vanet environments. In Proceedings of the 20th International Conference, ICIC 2024, Tianjin, China, 5-8 August 2024;
pp. 391-402.

Ferguson,]. Reverse Engineering Code with IDA Pro; Syngress: Rockland, MA, USA, 2008.

Feng, X.; Zhu, X.; Han, Q.-L.; Zhou, W.; Wen, S; Xiang, Y. Detecting vulnerability on iot device firmware: A survey. IEEE/CAA].
Autom. Sin. 2022, 10, 25-41.

Chen, H.; Liu, J.; Wang, J.; Xun, Y. Towards secure intra-vehicle communications in 5g advanced and beyond: Vulnerabilities,
attacks and countermeasures. Veh. Commun. 2023, 39, 100548.

Kim, G.; Hong, S.; Franz, M.; Song, D. Improving cross-platform binary analysis using representation learning via graph
alignment. In Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis, Virtual
Conference, 18-22 July 2022; pp. 151-163.

Li, X,; Qu, Y,; Yin, H. Palmtree: Learning an assembly language model for instruction embedding. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security, Virtual Conference, 15-19 November 2021; pp. 3236-3251.

https://dx.doi.org/10.14722/bar.2020.23002

Informatics 2025, 12, 67 23 of 24

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Zhang, X.; Sun, W.; Pang,].; Liu, F; Ma, Z. Similarity metric method for binary basic blocks of cross-instruction set architecture.
In Proceedings of the 2020 Workshop on Binary Analysis Research, San Diego, CA, USA, 23 February 2020; Volume 10.

Park, J.; Lee, S.; Hong, J.; Ryu, S. Static analysis of jni programs via binary decompilation. IEEE Trans. Softw. Eng. 2023,
49, 3089-3105.

Song, Q.; Zhang, Y.; Wang, B.; Chen, Y. Inter-bin: Interaction-based cross-architecture iot binary similarity comparison. IEEE
Internet Things J. 2022, 9, 20018-20033.

Riley, G.F.; Henderson, T.R. The ns-3 network simulator. In Modeling and Tools for Network Simulation; Springer: Berlin/Heidelberg,
Germany, 2010; pp. 15-34.

Xu, X.; Liu, C.; Feng, Q.; Yin, H.; Song, L.; Song, D. Neural network-based graph embedding for cross-platform binary code
similarity detection. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas,
TX, USA, 30 October-3 November 2017; pp. 363-376.

Tang, R.; Lu, Y;; Liu, L.; Mou, L.; Vechtomova, O.; Lin, J. Distilling task-specific knowledge from bert into simple neural networks.
arXiv 2019, arXiv:1903.12136.

Lin, J.; Liu, Z.; Wang, H.; Han, S. Amc: Automl for model compression and acceleration on mobile devices. In Proceedings of the
European Conference on Computer Vision (ECCV), Munich, Germany, 8-14 September 2018; pp. 784-800.

Park, S.; Choi, W. Regulated subspace projection based local model update compression for communication-efficient federated
learning. IEEE |. Sel. Areas Commun. 2023, 41, 964-976.

Devlin, J.; Chang, M.; Lee, K.; Toutanova, K. BERT: Pre-training of deep bidirectional transformers for language understanding.
arXiv 2018, arXiv:1810.04805.

Duan, Y;; Li, X.; Wang, J.; Yin, H. Deepbindiff: Learning program-wide code representations for binary diffing. In Proceedings of
the Network and Distributed System Security Symposium, San Diego, CA, USA, 23-26 February 2020.

Ding, S.H.; Fung, B.C.; Charland, P. Asm2vec: Boosting static representation robustness for binary clone search against code
obfuscation and compiler optimization. In Proceedings of the 2019 IEEE Symposium on Security and Privacy (SP), San Francisco,
CA, USA, 20-22 May 2019; pp. 472-489.

Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed representations of words and phrases and their composi-
tionality. In Proceedings of the 27th International Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA,
5-10 December 2013; Volume 26.

Chua, Z.L.; Shen, S.; Saxena, P; Liang, Z. Neural nets can learn function type signatures from binaries. In Proceedings of the 26th
USENIX Security Symposium (USENIX Security 17), Vancouver, BC, Canada, 16-18 August 2017; pp. 99-116.

Zuo, E; Li, X;; Young, P,; Luo, L.; Zeng, Q.; Zhang, Z. Neural machine translation inspired binary code similarity comparison
beyond function pairs. arXiv 2018, arXiv:1808.04706.

Chen, S.; Hu, J.; Shi, Y,; Peng, Y,; Fang, J.; Zhao, R.; Zhao, L. Vehicle-to-everything (v2x) services supported by lte-based systems
and 5g. IEEE Commun. Stand. Mag. 2017, 1, 70-76.

Sun, H.; Sun, M.; Weng, J.; Liu, Z. Analysis of id sequences similarity using dtw in intrusion detection for can bus. IEEE Trans.
Vehicular Technol. 2022, 71, 10426-10441.

Molina-Masegosa, R.; Gozalvez, J.; Sepulcre, M. Configuration of the c-v2x mode 4 sidelink pc5 interface for vehicular communi-
cation. In Proceedings of the 2018 14th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN), Shenyang,
China, 6-8 December 2018; pp. 43—-48.

Tan, H.; Zheng, W.; Vijayakumar, P.; Sakurai, K.; Kumar, N. An efficient vehicle-assisted aggregate authentication scheme for
infrastructure-less vehicular networks. IEEE Trans. Intell. Transp. 2022, 24, 15590-15600.

Yang, Y.; Wei, L.; Wu,].; Long, C.; Li, B. A blockchain-based multidomain authentication scheme for conditional privacy
preserving in vehicular ad-hoc network. IEEE Internet Things]. 2021, 9, 8078-8090.

Adil, M.; Ali, J.; Attique, M.; Jadoon, M.M.; Abbas, S.; Alotaibi, S.R.; Menon, V.G.; Farouk, A. Three byte-based mutual
authentication scheme for autonomous internet of vehicles. IEEE Trans. Intell. Transp. Syst. 2021, 23, 9358-9369.

Zhou, Y.; Cao, L.; Qiao, Z,; Xia, Z.; Yang, B.; Zhang, M.; Zhang, W. An efficient identity authentication scheme with dynamic
anonymity for vanets. IEEE Internet Things J. 2023, 10, 10052-10065.

Blyth, D.; Alcaraz, J.; Binet, S.; Chekanov, S.V. ProlO: An event-based I/O stream format for protobuf messages. Comput. Phys.
Commun. 2019, 241, 98-112.

IEEE Std 1609.0-2019 (Revision of IEEE Std 1609.0-2013); IEEE Guide for Wireless Access in Vehicular Environments (WAVE)
Architecture. IEEE: Piscataway, NJ, USA, 2019; pp. 1-106.

Guo, W.; Mu, D.; Xing, X.; Du, M.; Song, D. {DEEPVSA}: Facilitating value-set analysis with deep learning for postmortem
program analysis. In Proceedings of the 28th USENIX Security Symposium (USENIX Security 19), Santa Clara, CA, USA,
14-16 August 2019; pp. 1787-1804.

Informatics 2025, 12, 67 24 of 24

32.

33.

34.

35.

36.

37.

38.

Lattner, C.; Adve, V. LLVM: A compilation framework for lifelong program analysis and transformation. In Proceedings of
the International Symposium on Code Generation and Optimization, 2004. CGO 2004, San Jose, CA, USA, 20-24 March 2004;
pp- 75-88.

Lee, YJ.; Choi, S.-H.; Kim, C.; Lim, S.-H.; Park, K.-W. Learning binary code with deep learning to detect software weakness.
In Proceedings of the KSII the 9th International Conference on Internet (ICONI) 2017 Symposium, Vientiane, Laos, 17-20
December 2017.

3GPP TR22. 886 V16. 2.0. Study on Enhancement of 3GPP Support for 5G V2X Services. 2018. Available online: https:
/ /portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationld=3108 (accessed on 5 July 2025).
Chang, B.; Zhao, B.; Zhang, Q.; Liu, P; Tian, Y.; Beyah, R.; Ji, S. FirmRCA: Towards Post-Fuzzing Analysis on ARM Embedded
Firmware with Efficient Event-based Fault Localization. In Proceedings of the 2025 IEEE Symposium on Security and Privacy
(SP), San Francisco, CA, USA, 12-14 May 2025; pp. 3783-3800.

Xu, J.; Mu, D.; Xing, X,; Liu, P; Chen, P.; Mao, B. Postmortem program analysis with hardware-enhanced post-crash artifacts.
In Proceedings of the 26th USENIX Security Symposium (USENIX Security 17), Vancouver, BC, Canada, 16-18 August 2017;
pp- 17-32.

Mu, D; Du, Y.; Xu, J.; Xu, J.; Xing, X.; Mao, B.; Liu, P. POMP++: Facilitating postmortem program diagnosis with value-set
analysis. IEEE Trans. Softw. Eng. 2019, 47, 1929-1942.

Intel. Collecting Intel® Processor Trace (Intel Pt) in Intel® System Debugger. Available online: https:/ /www.intel.com/content/
www /us/en/developer/videos/collecting-processor-trace-in-intel-system-debugger.html?wapkw=intel %20pt (accessed on
5 July 2025).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3108
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3108
https://www.intel.com/content/www/us/en/developer/vide os/collecting-processor-trace-in-intel-system-debugger.html?wapkw=intel%20pt
https://www.intel.com/content/www/us/en/developer/vide os/collecting-processor-trace-in-intel-system-debugger.html?wapkw=intel%20pt

	Introduction
	Background and Literature Review
	Proposed Method
	Fuzzy Matching Analysis for Code Similarity
	Function Identification
	Function Similarity with Fuzzy Matching
	Semantic Similarity Calculation

	Training Information Formatted Using ProtoBuf
	Introduction to ProtoBuf
	ProtoBuf Instruction Representation Framework
	Encoder
	Decoder
	Training and Prediction

	ProtoBuf Structure-Based Pseudonym Certificate Verification Method for Vehicular Networks
	Initialization Phase
	Pseudonym Certificate Generation Phase
	Vehicle-to-Vehicle Secure Communication Phase

	Certificate Authentication Communication Data Structure Based on ProtoBuf
	Key Negotiation Process Design
	Implementation of Certificates Based on PB Structure

	Experimental Results and Analysis
	Experiment Setup
	Performance Evaluation of Model on Downstream Tasks
	Cross-Architecture Instruction Embedding for Firmware Vulnerability Detection Using ProtoBuf Bridging Technology
	Instruction Search Evaluation
	Similarity Analysis of Instruction Embedding Vectors

	Communication Cost of Vehicle-Side and RSU Trusted Communication Scheme
	Security Evaluation of Trusted Communication Scheme
	Scalability Comparison of Firmware Analysis Methods
	Discussion on Balancing Accuracy and Efficiency

	Conclusions
	References

