
Injecting Memory Leaks to Accelerate Software Failures

Jing Zhao, Yuliang Jin
Computer Science and Tech. Dept.

Harbin Engineering University
Harbin, China

{jingzhao.duke, jyl198803}@gmail.com

Kishor S. Trivedi

Electrical and Computer Eng. Dept.
Duke University
Durham, USA
kst@ee.duke.edu

Rivalino Matias Jr.
School of Computer Science

Federal University of Uberlandia,
Uberlandia, Brazil.

rivalino@facom.ufu.br

Abstract—A number of studies have reported the phenomenon
of “Software aging”, caused by resource exhaustion and
characterized by progressive software performance
degradation. We develop experiments that simulate an on-line
bookstore application, following the standard configuration of
TPC-W benchmark. We study the application failures caused
by memory leaks, using the accelerated life tests method. In
our experiments, the memory consumption rate is selected as
the acceleration factor, and an IPL-lognormal model is used to
estimate the time to failure at each acceleration level.
Subsequently, the estimate of the time to failure distribution at
normal condition is obtained. Our acceleration experimental
results based on the IPL-lognormal model show that it can be
used to greatly reduce the cost to obtain the time to failure at
normal level, which can be used in scheduling software
rejuvenation. Finally, we select the Weibull time to failure
distribution at normal level, to be used in a semi-Markov
process, to optimize the software rejuvenation trigger interval.

Keywords—accelerated life tests; memory leaks; optimal
software rejuvenation; semi-Markov process; software aging

I INTRODUCTION
Studies show that operational software failures are

transient in nature, caused by phenomena such as overloads
or timing and exception errors [1]. Grottke et al. classified
software faults into three types according to potential
manifestation characteristic: Bohrbug, Mandelbug, and
Aging-related bug, and then analyzed the faults discovered
in the on-board software for 18 JPL/NASA space missions
based on this classification method [2]. Aging-related bugs
cause an increasing failure rate, gradual software
performance degradation, and may eventually lead to a
system hang or crash. Software aging is mainly caused by
the successive accumulation of the effects of aging-related
fault activations. It leads to the exhaustion of system
resources, mainly due to memory-leaks, unreleased locks,
non-terminated threads, shared-memory pool latching,
storage fragmentation, or comparable causes [3], [4]. Many
of the causes of software aging are very hard to identify due
to their randomness [5]. Hence, it is not uncommon to have
unknown aging faults causing known aging effects. This
undesired phenomenon exists not only in regular software
such as web and application servers, but also in critical
applications that require high dependability levels. Software
aging could cause great losses in safety-critical systems [6],
including the loss of human lives [7]. To counteract

software aging, researchers have proposed a proactive
approach called software rejuvenation (SR) [3].
Rejuvenation has been implemented in various computing
systems, such as billing data collection systems,
telecommunication systems, transaction processing systems,
and spacecraft systems [8], [9], [10]. It involves
occasionally terminating an application process, cleaning its
internal state and restarting it in order to release system
resources, so that the software performance is recovered.
One or more indicators of aging can capture the aging
behavior [1], [4], [19]. Such indicators are measurable
metrics of the target system likely to be influenced by
software aging.

The most popular web server on the Internet, the
Apache web server [11], is known to suffer from software
aging [12]. It has been demonstrated that the extent of
software aging depends on the workload imposed on the
system. For examples see [1], [12], [13], [14] for Apache
web server, and see [15], [16] for Axis. Most of the
previous experimental research on software aging and
rejuvenation employed Apache web server as a test bed, and
then used statistical methods to predict the time to resource
exhaustion [3], [12], [14], [16]. Analytic models used for
capturing software rejuvenation are based on the
assumption that the distribution of time to failure due to
software aging is known, and the aim is to determine the
optimal times to trigger rejuvenation in order to maximize
system availability or related measures [4], [15], [17].
Whatever approach is used rejuvenation scheduling, such as
measurement based, analytic, or both, estimated time to
failure should be obtained more efficiently. Due to the
difficulty in experimentally studying aging-related system
failures by observation of failure times, Matias et al.
develop a systematic approach to accelerate the aging
effects at the experimental level [18]. They introduce the
concept of aging factors and use different levels of
accelerated workload to increase the system degradation.
Based on the degradation data of selected system
characteristics, captured through measurements, they apply
the statistical technique of accelerated degradation tests
(ADT) to estimate the time to failure in normal condition
(without acceleration). Alternatively, in [19] the authors do
not use degradation data, but directly observe failures
obtained also under accelerated workloads. In this case,
they use another technique called accelerated life tests (ALT)

2011 22nd IEEE International Symposium on Software Reliability Engineering

1071-9458/11 $26.00 © 2011 IEEE

DOI 10.1109/ISSRE.2011.24

260

to estimate the time to failure in normal conditions. In both
studies the system under test was based on the Apache web
server.

Memory leaks are recognized to be one of the major
causes of resource exhaustion problems in complex
software, which represent the one of the most serious cause
of aging. In [20], the authors focus on two types of memory
problems (fragmentation and leakage) that cause software
aging, presenting an experimental study on the cumulative
effect of these problems in software systems [20], [21].
Alonso et al. [22] inject memory leaks to intensify memory
consumption to derive the nonlinear memory resource
behavior, and then use machine-learning algorithms to
predict whether software aging has reached a given
threshold. In this paper, motivated by the ALT method
discussed in [19], we also inject memory leaks to intensify
memory consumption so as to accelerate application failure.
We then derive the estimates of time to failure (TTF) at
different acceleration levels as well as in normal condition.
Such an estimate is then used in scheduling software
rejuvenation. Memory leak is one of the many types of
aging effects, but any other aging effect (e.g., fragmentation
problems) can be included in our approach. To the best of
our knowledge, there are no other approaches to accelerate
the aging effects in software aging. Comparisons can be
done using failure data obtained at acceleration levels with
data collected without acceleration (at normal level) and
without rejuvenation. The major problem is that without
acceleration, observing aging related failures would take
too long a time, which provides the motivation to
investigate this approach. The requirements to apply it are
to select the stress variable and their effects on the system
under test. It is not different than in other engineering areas,
where several techniques are combined.

The contribution of this paper is as follows. First, the
MTTF at normal conditions is obtained by ALT method,
which greatly reduces the experimental time to derive the
MTTF. Second, MTTF along with Weibull distribution of
time to failure is used in a semi Markov model to compute
the optimum rejuvenation trigger interval. Thus, the
uniqueness of this paper is in combining experimentation,
statistics, probabilistic models, and optimization.

The rest of the paper is organized as follows. In
Section II we show how to use ALT applied to systems
suffering from software aging. In Section III, the
experimental setup and data collection are explained, where
we describe how memory leak is injected to derive the
system TTF samples at different acceleration levels. In
Section IV, we discuss how to use an IPL-lognormal
analytical model to estimate the mean time to failure for the
system running at normal level. In Section V, we explain the
use of the Weibull time to failure distribution along with a
semi-Markov process in order to optimize the software
rejuvenation trigger interval with the system availability
and operational cost as objective functions. Finally, we
present our conclusions in Section VI.

II ALT METHOD APPLIED TO SOFTWARE AGING
Accelerated life tests method (ALT) is successfully

applied in many engineering fields [23] to significantly
reduce the experimentation time, which is designed to
quantify the life characteristics (e.g., mean time to failure)
of a system under test (SUT). By applying controlled
stresses to reduce the SUT’s lifetime, the SUT is tested in
an accelerated mode, and results are then adjusted to its
normal operational condition. Thus, ALT uses the lifetime
data obtained under accelerated stresses to estimate the
lifetime distribution of the SUT for its normal condition.
This systematic approach can be divided into four main
steps: 1) selection of accelerating stress, 2) ALT planning
and execution, 3) definition of the life-stress aging
relationship, and 4) estimation of underlying life
distribution (pdf) for the normal condition. The following
sections will discuss each step in detail.

A. Selection of accelerating stress
A fundamental element during test planning is the

definition of accelerating stress variable and its levels.
Typical engineering accelerating stresses are temperature,
vibration, humidity, voltage, and thermal cycling [23].
However, software reliability engineering does not have
standards, related to software accelerating stresses for ALT.
Given the nature of aging related faults, we can determine
suitable accelerating stresses based on experiments. Based
on [18], we employ memory consumption rate as the stress
factor and use constant stress loading scheme in this paper.
We inject memory leaks into a web server software to
intensify its memory consumption rate.

B. ALT planning and execution
After selecting the acceleration factor, we can plan the

ALT. This activity includes the following elements: number
of stress levels, the amount of stress applied at each level,
the allocation proportion in each level, and the sample size.
In our approach to apply ALT for software components, the
sample size is the number of test replications. According to
the theory, the ALT test plans can be classified as:
traditional, optimal, and compromise plans [23]. The
traditional plans usually consist of three or four stress
levels, with the same number of replications allocated at
each level. The optimal plans specify only two levels of
stress, high and low. The compromise plans usually work
with three or four stress levels, and use an unequal
allocation proportion. A more detailed description of the
three plans can be found in [23]. In our approach, the
traditional plan with four levels is used.

C. Life-Stress aging relationship
Once the SUT is tested at the selected stress levels, the

estimate of the mean time to failure (MTTF) at normal
condition is to be obtained from the TTF samples obtained
at different stress levels. From the ALT theory, we know
that the Inverse Power Law (IPL) model fits well ALT

261

applications for positive stress. Therefore, we need to build
the relationship between life-stress at accelerated and
normal levels. As an example, consider the life-stress model
that is known as the Inverse Power Law (IPL) [23]:

1() wL s
k s

�
�

 (1)

where L represents a SUT life characteristic (e.g., mean
time to failure), s is the stress level, k (k>0) and w are
model parameters to be determined from the observed
failure time samples.

D. Lifetime Distribution Estimation
Assuming that the TTF sample is exponentially

distributed, IPL yields the pdf (probability density function)
of TTF as:

(,)
ww ks tf t s ks e�� (2)

Maximum-likelihood estimation (MLE) method can be
applied to estimate the model parameters (k, w), and then
use them to estimate the MTTF, L, for the SUT under
normal stress level.

III EXPERIMENTAL SETUP
We adopt ALT to experimentally study application

failure affected by software aging. Based on failure time
samples collected under different stress loadings, the
estimate of the time to failure distributions at different
acceleration levels as well as at normal condition are
obtained.

A Test Bed
To study the aging effects of application failures

caused by memory leaks, we execute experiments that
reproduce a typical web application. Our test bed is
composed of a web server, a database server, and a set of
clients. The database and web servers are on the same
physical machine while all the clients occupy another
physical machine. We have used a multitier e-commerce
web site that simulates an on-line bookstore. We ran the
experiments on Tomcat web container, and all HTML pages
were dynamically generated by the server. In TPC-W
standard, there are 14 different web pages including home
page, best selling page, new books page, search page,
shopping cart and order status page, etc. The web traffic is
generated by a Remote Browser Emulator (RBE), which
emulates users of the website. RBE maintains the mix of
web interactions for EBs. These include three standard
mixes of web interactions: Browsing Mix, Shopping Mix,
and Ordering Mix. We use Shopping Mix in our tests. The
details of these Mixes are shown in the table of TPC-W
benchmark [24]. The workload is based on the standard
configuration of TPC-W benchmark. This environment also
includes Java servlets, MySQL as the database server, and
Apache Tomcat as the application server [25]. TPC-W

allows us to run different experiments using different
parameters and under a controlled environment. TPC-W
clients, the so-called Emulated Browsers (EBs), access the
web site in sessions. A session is a sequence of logically
connected requests (from the EB point of view). Between
two consecutive requests from the same EB, TPC-W
undergoes a “thinking phase” [24], representing the time
between the users receiving the web page requested and
generating the next request. TPC-W has three kinds of
workload (Browsing, Shopping, and Ordering). We conduct
our experiments using Shopping transactions only. Figure 1
presents the experimental environment used in this work.

Figure 1. Experimental environment

B Injecting memory leaks
To emulate the aging effects consuming resources until

the application failure, we have modified the TPC-W
implementation by changing the TPCW_search_
request_servlet to inject memory leaks. Each memory
injection causes about 1 megabyte of memory leak. In our
case, the maximum memory that can be used by JVM is
128 megabytes. The servlet class relationship including
TPCW_search_request_servlet is shown in Figure 2.
Furthermore, we add a piece of code to the servlet so as to
modify the doGet() method inside TPCW_search_request
_servlet.

The doGet() modification is illustrated in Figure 3. A
random number from 0 to N is generated, where N is
specified in a configuration file. The randomNumber value
determines how many requests can use the servlet before
the next memory leak is injected. This number is decreased
by one on each invocation of doGet(), i.e., on every visit of
the search request page. When this number is reduced to
zero, a new data is appended to the BigObjList and in the
same time a new randomNumber is generated. Thus, the
time between memory leaks depends on the frequency of
the servlet invocations. According to the TPC-W
specification, this frequency depends on the workload
chosen. In our experiment, we select the workload to be 100
EBs. Hence, under high workload our servlet injects
memory leaks quickly. On the other hand, under low
workloads the leak rate is lower. But, in the long term the
average leak rate would depend on the average value of the
random variable randomNumber, with fluctuations that
become less relevant when averaged over time. Therefore,
since the memory consumption rate would depend on the
value of N, we can simulate this effect by varying N.

262

GenericServlet

init()
service()
destory()
...()

(from javax.servlet)

Node
Object data;
Node next;
Node previous;

Node()

Servlet

init()
service()
destroy()

(from javax.servlet)

<<Interface>> HttpServlet

init()
service()
destory()
...()

(from javax.servlet.http)

BigObjList
Node head;
Node tail;
int length;

isEmpty()
size()
append()
remove()

TPCW_search_request_servlet
int n;
int tandomNumber;
BigObjList bol;

doGet()
readN()

<<use>><<use>>

Figure 2. Java servlet class

Figure 3. Modification of doGet()

The Java heap memory is divided into three main zones:
Young, Old, and Permanent. A Java object is created in one
of these heap zones and is garbage-collected after there are
no references to it. Resource behavior can look quite
different depending on our monitoring strategy. Memory
usage by a Java application looks quite different if we
monitor it from the operating system (OS) level or from
inside the JVM. From the OS level, when a Java application
frees up memory objects, it is not possible to perceive the
changing trend for the memory used. However, if we
observe it from inside the JVM, then we can obtain accurate
measures. Permanent Generation stores JVM's internal
representation of the Java Classes that are mostly static,
unchanged during the lifetime of JVM. In our experiment,
we focused on the change of JVM heap, Java Objects. It can
be justified because the JVM starts reserving a maximum
amount of memory to be used by dynamic memory
allocations, and JVM takes care of it without involving the
OS. This strategy prevents the OS to be aware of the
allocations and deallocations occurring inside the JVM.
Therefore, in our experiment we measure memory

consumption inside the JVM, and collect data on the Young
and Old heaps [26].

We use JVM monitoring tool jmap [26] to collect the
JVM memory exhaustion data. A script written in java on
the server invokes jmap periodically, and thence obtains the
memory usages of Young, Old and Permanent. We collect
Young plus Old used at each five-second interval. The
Young plus Old used space as well as the capacity when N
equals 7 is shown in Figure 4(a), and Old memory free is
shown in Figure 4(c). In addition, Java’s Runtime class
provides a lot of information about the resource details of
Java Virtual Machine. Java’s Runtime API is invoked when
TPCW_search_request_servlet is injected, so that we
collect runtime memory used by JVM from the servlet
perspective. This can further account for the memory
exhaustion at each injection point. Run time memory used
is shown in Figure 4(c). In Figure 4(a), we see that the
Young plus Old memory of JVM is used up, since it is close
to both heaps’ maximal capacity, while in Figure 4(b) we
see that the runtime memory used is close to the JVM
capacity. The Young plus Old capacity is shown in Figure
4(a), and from Figure 4(c), we see that the Old memory free
is close to zero. From these figures, we can see the memory
exhaustion of JVM due to memory leaks from different
perspectives and see that different views are consistent.

Figure 4(a). Young + Old heaps used

Figure 4(b). Run time memory used

263

Figure 4(c). Old heap memory free

IV RESULTS ANALYSIS
In our experiment, we design four acceleration levels

(S1 to S4) with N equals to 4, 8, 12, and 16, for each level,
respectively. We run 7 replications at each acceleration level,
thus 28 samples are obtained in total. Also, we use the
algorithm described in [23] to calculate the sample size,
nALT, thus verifying whether the initial number of samples
satisfies the criteria of statistical analysis required by the
ALT method. The nALT can be calculated by solving
equations from (3) to (7):

1 1(...) /j jx n x n x np� � � (3)

where jx is the stress level value transformed (loge),

is the number of replications executed in the jth level of

stress, and np is the total number of tests executed, given

that np = n

jn

1+…+nj.

1(...) /
jj j n jy y y n� � � j (4)

where is the transformed (log
jn jy e) value of the jth

failure time obtained in the level of stress j.
1

2 2 2
1[() ... ()]

j jj j n j j
j

j

y y y y
s

v

� � � � ��� �
� �	

��
� (5)

where vj (vj = nj -1) is the degrees of freedom of the sj, and
sj is the standard deviation of failure times obtained at jth
strees level.

1
2 2 2

1 1 ... j jv s v s
s

v
� � ��� �
� �	

��
� (6)

where v is the number of degrees of freedom calculated as
v=v1+…+vj, and s is the pooled estimate of the log

transformed (loge) standard deviation () in (7).

2

2 2
0

2
1 ()

()
ALT

znpn x x
x x

�
�

� �� �
� ��� �� �� �� �� � �� �� �� �� �� � �� �� �� �	

�

� (7)

where
0x is the log transformation (loge) of the stress

value assumed at normal use rate, and z is the tabulated
value for the standard normal distribution at a given
significance level � , � is the precision of the estimate,
which depends on the fitted pdf and the metric of interest
for the accelerated failure times, where r� � (for mean) or

loge r� � (for median); r is the precision for the estimator
of interest [23]. When r� � , r is the half width of the
interval used to calculate the confidence interval for the
mean. Alternatively, r=(1+m), where (100%m�) is the
tolerated error for the estimator of the median.

Based on the experiment results, we calculate the
mean memory consumption rate from runtime memory used,
at each acceleration level. For each replication, the memory
consumption rate is calculated using the Sen’s slope
estimate method [27]. Sen’s non-parametric method is a
way to estimate the true slope of the data, that is, if the data
shows an upward trend, there is evidence of an upward
trend. These results are shown in Table I. Next, we conduct
the experiment removing acceleration factors so as to
calculate the memory consumption rate at normal level. We
observe that when the workload is equals to 100 EBs, the
total experimental time is 398790 seconds, or 4.615625
days. This target is to obtain the memory consumption rate
at normal level calculated by Sen’s slope. The memory
consumption rate of Young and Old heaps is approximately
0.0121kB/s, based on the Sen’s slope estimation method
(see Figure 5). We use the random number to simulate the
randomness of requests, and different random number
values correspond to different memory consumption rates.
The mean consumption rate is obtained using 7 replications
at each acceleration level. For example, when the random
number N equals 16, the mean memory consumption rate is
56.18 kB/s.

TABLE I. MEMORY CONSUMPTION RATE AND N

Memory
consumption
rate (kB/s)

N Memory consumption rate per replication

0.0121 normal level

56.18 16 51.521, 55.986, 57.66, 62.102, 51.851,
52.844, 61.295, 56.18

69.341 12 69.838, 73.844, 65.769, 70.645, 65.832,
63.443, 76.019, 69.341

97.613 8 90.067, 93.847, 102.38, 100.16, 98.2, 101.87,
96.765, 97.613

166.39 4 157.44, 160.57, 179.87, 176.88, 155.07,
164.93, 169.97, 166.39

264

Figure 5. Memory consumption rate of Young plus Old heaps

calculated using Sen’s slope method.

The samples of failure times at each acceleration level

are shown in Table II. It corresponds to the application
failures caused by out of memory. According to [18], we
evaluate the probability distributions Weibull, Lognormal,
and Exponential to identify the best fit. The criterion used
to build the best-fit ranking is the log-likelihood function
(Lk) [28].

TABLE II. SAMPLE OF FAILURE TIMES (SECONDS)

TTF (S1) TTF(S2) TTF(S3) TTF(S4)
455 665 965 1230
425 670 930 1155
430 655 1005 1160
440 685 930 1060
465 720 1000 1065
465 640 1000 1185
430 715 935 1360

TABLE III. SAMPLE OF LOG TRANSFORMED ACCELERATION DATA

TTF (S1) TTF(S2) TTF(S3) TTF(S4)
6.1203 6.4998 6.8721 7.1148
6.0638 6.5073 6.8352 7.0519
6.0521 6.4846 6.9127 7.0562
6.0868 6.5294 6.8352 6.9660
6.1420 6.5793 6.9078 6.9707
6.1420 6.4615 6.9078 7.0775
6.0638 6.5723 6.8405 7.2152

TABLE IV. RESULTS OF MODEL FITTING FOR ACCELERATED FAILURE
TIMES

Accelerated level Model Lk Best-fit Ranking
16 (S1) Lognormal

Weibull
Exponential

-41.6922
-42.5207
-56.4746

1st

2nd

3rd

12 (S2) Lognormal
Weibull
Exponential

-34.3337
-34.3237
-55.1153

2nd

1st

3rd

8 (S3) Lognormal
Weibull
Exponential

-33.3200
-33.6147
-52.6399

1st

2nd

3rd

4 (S4) Lognormal
Weibull
Exponential

-29.3888
-29.5596
-50.2522

1st
2nd

3rd

The natural logarithms of acceleration sample data sets
are shown in Table III. We calculate nALT to be 25 using
formula (3) to (7), which is the minimum number of
samples needed for our ALT test plan. Since this number is
smaller than we obtained in our sampling, we satisfy the
ALT assumptions for sample size.

The fitting results for these four models are shown in
Table IV. The Lognormal distribution provides the best
fitting results for acceleration levels S1, S3, S4, and its
fitting result is close to Weibull’s at acceleration level S2,
so we chose Lognormal combined with IPL model to create
our life-stress relationship model. The probability density
function (pdf) of Lognormal is shown in Equation 8.

21 ()
21()

2
t

t t

t

f t e
t

 �

�

�

��
�

�

� (8)

where, t = time to failure, t´=ln(t), t� = mean of the natural
logarithms of the time to failure, �t´=standard deviation of
the natural logarithms of the failure times.

The life characteristic for the Lognormal distribution
is its median value that is given by (9)

tt e ��
�

. (9)

The pdf for the IPL-lognormal model can be obtained
first by setting ()t L v�

�
 in (1). Then

1()t
we L v

k v
� � �

�
 , (10)

therefore,

ln() ln()t k w v� � � � , (11)

thus substituting (11) into (8) yields the IPL-lognormal pdf
as shown in (12).

21 ln() ln()()
21()

2
t

t k w v

t

f t e
t

 �
�

�� �
�

�

� (12)

As a result, (13) can be directly derived from (12) and
used to estimate the mean time to failure, MTTF, of the
SUT at a specific use rate.

2ln() ln()() tk w vMTTF v e �� � �� (13)

TABLE V. PARAMETER ESTIMATION OF LOGNORMAL MODEL

90% confidence interval Accelerated
level Parameter ML

estimate Lower Upper

S1 �1
�1

7.0646
0.0923

7.0072
0.0526

7.1220
0.1622

S2 �2
�2

6.8730
0.0373

6.8498,
0.0222

6.8962
0.0627

S3 �3
�3

6.5192
0.0479

6.4894
0.0269

6.5490
0.0854

S4 �4
�4

6.0958
0.0408

6.0705
0.0236

6.1212
0.0705

265

In order to verify the scale of invariance, we verify
whether the estimated and values at each acceleration
level are inside the same confidence interval. Table V gives
the parameter estimation of lognormal model by the ML
estimation method [23].

The estimated IPL-lognormal parameters are listed in
Table VI. We use Equation 12 to estimate the underlying
life distribution for the normal condition. Figure 6(a)
presents the fit of the IPL-lognormal model estimated from
the four stress levels, and for the normal condition. Figure
6(b) shows the failure and stress relationships. The
calculated estimate for time to failure (x-axis) at the normal
level starts at 0.0124. As a result, we can obtain the MTTF
for the normal level from this model that equals to
2.1114E+6 seconds (24.4375 days). The 90% confidence
interval is (1.3503E+6, 3.3014E+6) seconds - about (15.63,
38.21) days.

TABLE VI. IPL-LOGNORMAL PARAMETERS
90% confidence intervalParameter ML Estimate Lower Upper

k 2.3225E-5 1.8529E-5 1.8529E-5
w 0.8979 0.8478 0.9480
 0.0555 0.0427 0.0721

Time (s)

F(
t)

100.000 1.000E+71000.000 10000.000 100000.000 1000000.000
1.000

5.000

10.000

50.000

99.000

s1 s2 s3 s4
Normal

Figure 6(a). The IPL-lognormal model’s ML estimates and 90%

confidence intervals for F(t) at normal level

Stress (time consumption rate kb/s)

Li
fe

 (
se

co
nd

s)

0.010 1000.0000.100 1.000 10.000 100.000
100.000

1.000E+7

1000.000

10000.000

100000.000

1000000.000

Figure 6(b). Failure and stress levels by the IPL-lognormal model

estimation

Time (s)

F(
t)

1000000.000 1.000E+7
1.000

5.000

50.000

99.000

Figure 7(a). Probability plot for the normal condition level

Figure 7(a) presents the probability plot for the normal

condition level, and the standardized residuals plot is shown
in Figure 7(b), which confirms the good fit of the estimated
model.

From these analysis results of tables and figures, we
can see the experimental costs to obtain the metric of the
normal TTF at experimental level, is greatly reduced. In
addition, the estimates of the time to failure distributions at
different acceleration levels as well as normal condition are
obtained. These results can be used to further schedule
software rejuvenation, and thus improve the software
availability, and reduce the maintenance costs.

Residual

Pr
ob

ab
ili

ty

-10.000 10.000-6.000 -2.000 2.000 6.000
1.000

5.000

10.000

50.000

99.000

s4
s3
s2
s1

Figure 7(b). Standardized residuals.

IV OPTIMAL SOFTWARE REJUVENATION
Based on the results discussed in Section V, we employ

the preventive maintenance model presented by Chen and
Trivedi in [29], using the Weibull time to failure
distribution. We optimize the software rejuvenation trigger
interval in order to maximize the system availability or
minimize the operational cost. Figure 8 shows this model. It
consists of three states: UP state, or state 0, in which the
system is up; RJ state, or state 1, in which the system is
undergoing software rejuvenation, and DOWN state, or
state 2, in which the system is down and under reactive

266

repair. State 0 is the only available state. From state 0 the
system will enter state 1 with a general distribution function
F0(t), for the software rejuvenation trigger interval, or fail
and enters into state 2 with a general time to failure
distribution F2(t). The distribution function for the duration
of software rejuvenation (proactive repair) is F1(t), and the
distribution function for the duration of reactive repair is
F3(t). This model is a semi-Markov process [28].

Figure 8. Rejuvenation model.

We assume that the rejuvenation trigger interval is

deterministic (t0) and the mean time to carry out the
rejuvenation and reactive repair are t1 and t2, respectively.
The two-parameter Weibull pdf for TTF is given by:

()
1() ()

t
t

f t e

!
! ! "
" "

�
�� (14)

where,
() 0f t # , ,0t # 0! $, 0" $,

� = scale parameter,
�=shape parameter (or slope),
The CDF of this Weibull distribution is given by:

()
() 1

t

F t e

!
"

�
� � (15)

The sojourn time in UP state is then given by:
1 1 10 (1 ()) () (,)00 0

th F t dt G t
" !

!! ! !"
� � � %& (16)

where 1 1(,) 0()
x uG x e u du!!

!
� �� &

%
is the incomplete

gamma function. Hence, we can get the steady state
availability:

0
(1 ()) ()0 0 1 0

h
Aweib h F t t F t t

�
� � � 2

 (17)

The IPL-Weibull model can be derived by setting �
=L(v), yielding the following IPL-Weibull pdf:

()1(,) ()
wKV tw wf t V kV KV t e

!!! ��� (18)

This is a three-parameter model. The estimated
IPL-Weibull parameters are listed in Table VII.

TABLE VII. IPL-WEIBULL PARAMETERS
90% confidence intervalParameter ML

Estimate Lower Upper
� 15.2094 11.7317 19.7182
k 2.9252e-5 2.3644e-5 3.6189e-5
w 0.8696 0.8212 0.9180

We obtain the MTTF at normal level as 8.7804E+5
seconds when memory consumption rate at normal level is
0.0124 kB/s. The 90% confidence interval of MTTF at
normal level is (5.4424E+5, 1.4166E+6) seconds.
Correspondingly, for the parameter � confidence interval is
denoted by (�low, �high) and is computed as (5.4424E+5,
1.4166E+6). Also, the parameter ! confidence interval,
denoted by, (,) is (11.7317, 19.7182) as shown

in Table VII.
low! high!

Therefore, from (17) we derive the steady state
availability A=Aweib(�,�), and its confidence interval
Alow=Aweib(�low,, �low), Ahigh=Aweib(�high,, �high). We assume that
the mean duration for carrying out software rejuvenation, t1,
is 1 minute, and the mean time for reactive repair, t2, is 5
minutes. Steady-state availability vs time to rejuvenation
trigger, t0, assuming the Weibull time to failure distribution
is shown in Figure 9. The optimal time to trigger
rejuvenation and the corresponding availability are marked
in this figure. In this case, the optimal choice of
rejuvenation trigger interval could accrue availability
improvement.

Another objective function is to minimize the expected
cost. A cost of C f per minute is incurred when the system

is down due to system failure, and a cost of C f� is

incurred for each reactive repair carried out; a cost of C p

per minute is incurred when the system is down for carrying
out software rejuvenation, and a cost of C p� is incurred for

each rejuvenation action carried out. The total expected cost
per minute is thus

/ /2 2 2 1 1C C C t C C tf f p p� � � �� �� � � � 1 ,

where and are the average number of
reactive repairs and rejuvenation executions per minute,
respectively.

/2 2t� /1 1t�

We assume that , .

Let C=C(�,�), C

1 / 60C Cp p�� � 5 / 60C Cf f�� �

low= C(�low,,�low), and Chigh= C(�high,,�high),
so we derive the cost C, Clow and Chigh. The average cost vs.
time to rejuvenation t0 is shown in Figure 10. The optimal
intervals for the cost models are as short as 5930 to 17810
minutes, while the optimal intervals for the availability
models are 6590 to 18980 minutes.

267

Figure 9. Steady-state availability vs time to rejuvenation t0

Figure 10. Average cost vs. time to rejuvenation t0

V CONCLUSION
In this paper, we develop experiments that simulate

software aging in an on-line bookstore application. We
study the effects of software failures caused by memory
leaks using the accelerated life tests method, following the
standard workload of the TPC-W benchmark. Based on the
collected data on the JVM memory consumption, first the
memory consumption rate was selected as the acceleration
factor. Secondly, the IPL-lognormal model was built to
estimate TTF at normal level. Thirdly, Weibull time to
failure distribution is used in a semi-Markov process, to
optimize the software rejuvenation trigger interval so as to
maximize the availability or minimize the operational cost.

Results show that the MTTF at normal use condition is
24.4375 days. A considerable reduction in experimentation
time is achieved by using the ALT method. Four stress
levels and 7 replications are used at each stress level. The
experimental time of each replication varies from 425
seconds to 1360 seconds. Another contribution of this paper
is that we use the results of TTF distribution estimates to
optimize the software rejuvenation trigger interval. Since

the known closed form result is only for the Weibull time to
failure distribution we use that over Lognormal. Our results
show only minor difference between the goodness of fit
between the Weibull and the Lognormal. We also compute
the availability confidence interval and operational cost at
the optimal rejuvenation trigger interval using the estimated
parameters from our experiments.

ACKNOWLEGEMENT
This work is supported in part by the National Natural
Science Foundation of China under Grant No. 60873036.
This work was also supported in part by FAPEMIG and
CNPq, Fundamental Research Funds for the Central
Universities (award number HEUCF100601,
HEUCFT1007), and Fundamental Research Funds for
Harbin Engineering University.

REFERENCES:
[1] M. Grottke, L. Li, K. Vaidyanathan, K.S. Trivedi, “Analysis of

Software Aging in a Web Server,” IEEE Transactions on reliability,
55(3), pp. 411-420, 2006.

[2] M. Grottke, A.P. Nikora, K.S. Trivedi, “An empirical investigation of
fault types in space mission system software,” 2010 IEEE/IFIP
international conference on dependable systems & networks (DSN),
pp. 447-456, 2010.

[3] S. Garg, A. van Moorsel, K. Vaidyanathan, K.S. Trivedi, “A
methodology for detection and estimation of software aging,” in Proc.
9th international Symposium on software Reliability Engineering, pp.
283-292, 1998.

[4] Y. Huang, C. Kinatla, N. Kolertis, “Software Rejuvenation: Analysis,
Module and Applications,” in Proc. 25th Symposium on Fault
Tolerant Computing, pp. 381-390, 1995.

[5] M. Grottke, R. Matias, and K. Trivedi, “The fundamentals of
software aging,” In Proc of Workshop on Software Aging and
Rejuvenation, in conjunction with IEEE International Symposium on
Software Reliability Engineering. 2008.

[6] Y.F. Jia, L. Zhao and K.Y. Cai, “A Nonlinear approach to modeling
of software aging in a web server”, in Proc. 15th Asia-Pacific
Software Engineering Conference, pp. 77-84, 2008.

[7] E. Marshall, “Fatal Error: How Patriot Overlooked a Scud,” Science,
255(5050), pp. 1347, 1992.

[8] K.Y. Cai, “Software Reliability and control,” Journal of computer
science and technology, 21(5), pp. 697-707, 2006.

[9] K.J. Cassidy, K.C. Gross, and A. Malekpour, “Advanced pattern
recognition for detection of complex software aging in online
transaction processing servers,” in Proc. International conference on
dependable systems and networks, pp. 478-482, 2002.

[10] X.M. Zhang and H. Pham, “Predicting operational software
availability and it’s applications to telecommunication systems,”
international journal of systems science, 33(11), pp. 923-930, 2002.

[11] Apache web server, http://www.apache.org
[12] Y. Bao, X. Sun, K.S. Trivedi, “A workload-based analysis of

software aging and rejuvenation,” IEEE Transactions on Reliability
54 (3), pp. 541-548, 2005

[13] T. Dohi, K. Goseva-Popstojanova, and K.S. Trivedi, “statistical
non-parametric algorithms to estimate the optimal software
rejuvenation schedule,” proc 2000 pacific Rim int’l symp dependable
computing PRDC, pp. 77-84, 2000.

[14] S. Garg, A. Puliafito, M. Telek,, K.S. Trivedi, “Analysis of
preventive maintenance in transactions based software systems,”
IEEE Transactions on Computers 47(1), pp. 96–107, 1998.

268

[22] J. Alonso, J. Berral, R. Gavaldà, J. Torres, “Adaptive on-line
software aging prediction based on Machine Learning,” Proc. Intl.
Conf. Dependable Systems and Networks, DSN 2010.

[15] L. Silva, H. Madeira, J.G. Silva , “Software aging and rejuvenation in
a SOAP-based server,” in proc. Intl. Symposium on Network
computing and applications, pp. 56-65, 2006.

[23] B.N.Nelson, Accelerated testing : statistical method, test plans, and
data analysis, New Jersey: Wiley, 2004.

[16] J. Alonso, L. Silva, A. Andrzejak, P. Silva, J. Torres,
“High-Available Grid Services Through the Use of Virtualized
Clustering,” Proc. Intl. Conf. on Grid Computing , pp. 34-41, 2007. [24] TPC-W Benchmark Java Version, http://www.ece.wisc.edu/

~pharm/tpcw.shtml [17] K. Vaidyanathan, K.S. Trivedi, “A comprehensive model for
software rejuvenation,” IEEE Transactions on Dependable and
Secure Computing, 2(2), pp. 124–137, 2005.

[25] Apache Tomcat. http://tomcat.apache.org/
[26] Jstat:http://java.sun.com/j2se/1.5.0/docs/tooldocs/share/jstat.html

[18] R. Matias, P. A. Barbetta, K. S. Trivedi, “Accelerated Degradation
tests applied to software aging experiments”, IEEE Transactions on
reliability, 59(1), pp 102-114, 2010.

[27] P.K. Sen, “Estimates of the regression coefficient based on Kendall’s
tau,” Journal of the American Statistical Association, 63(4), pp.
1379-1389, 1968.

[19] R. Matias, K. S. Trivedi, P. R.M. Maciel, “Using accelerated life
tests to estimate time to software aging failure”, ISSRE 2010, pp.
211-219.

[28] K.S. Trivedi, probability and statistics with reliability, queuing, and
computer science applications. Second edition. John wiley & sons,
New York, 2002.

[20] A. Macêdo, T. B. Ferreira, R. Matias, “The Mechanics of
Memory-Related Software Aging,” 2010 IEEE Second International
Workshop on Software Aging and Rejuvenation (WoSAR).

[29] D. Chen and K.S. Trivedi, “Analysis of periodic preventive
maintenance with general system failure distribution,” Proc. of 2001
Pacific Rim International Symposium on Dependable Computing, pp.
103-107 [21] R. Matias, I. Beicker, B. Leitao, P.R.M Maciel, “Measuring software

aging through OS kernel instrumentation,” 2010 IEEE Second
International Workshop on Software Aging and Rejuvenation
(WoSAR).

269

