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Abstract—A number of studies have reported the phenomenon 
of “Software aging”, caused by resource exhaustion and 
characterized by progressive software performance 
degradation. We develop experiments that simulate an on-line 
bookstore application, following the standard configuration of 
TPC-W benchmark. We study the application failures caused 
by memory leaks, using the accelerated life tests method. In 
our experiments, the memory consumption rate is selected as 
the acceleration factor, and an IPL-lognormal model is used to 
estimate the time to failure at each acceleration level. 
Subsequently, the estimate of the time to failure distribution at 
normal condition is obtained. Our acceleration experimental 
results based on the IPL-lognormal model show that it can be 
used to greatly reduce the cost to obtain the time to failure at 
normal level, which can be used in scheduling software 
rejuvenation. Finally, we select the Weibull time to failure 
distribution at normal level, to be used in a semi-Markov 
process, to optimize the software rejuvenation trigger interval. 

Keywords—accelerated life tests; memory leaks; optimal 
software rejuvenation; semi-Markov process; software aging 

I INTRODUCTION  
Studies show that operational software failures are 

transient in nature, caused by phenomena such as overloads 
or timing and exception errors [1]. Grottke et al. classified 
software faults into three types according to potential 
manifestation characteristic: Bohrbug, Mandelbug, and 
Aging-related bug, and then analyzed the faults discovered 
in the on-board software for 18 JPL/NASA space missions 
based on this classification method [2]. Aging-related bugs 
cause an increasing failure rate, gradual software 
performance degradation, and may eventually lead to a 
system hang or crash. Software aging is mainly caused by 
the successive accumulation of the effects of aging-related 
fault activations. It leads to the exhaustion of system 
resources, mainly due to memory-leaks, unreleased locks, 
non-terminated threads, shared-memory pool latching, 
storage fragmentation, or comparable causes [3], [4]. Many 
of the causes of software aging are very hard to identify due 
to their randomness [5]. Hence, it is not uncommon to have 
unknown aging faults causing known aging effects. This 
undesired phenomenon exists not only in regular software 
such as web and application servers, but also in critical 
applications that require high dependability levels. Software 
aging could cause great losses in safety-critical systems [6], 
including the loss of human lives [7]. To counteract 

software aging, researchers have proposed a proactive 
approach called software rejuvenation (SR) [3]. 
Rejuvenation has been implemented in various computing 
systems, such as billing data collection systems, 
telecommunication systems, transaction processing systems, 
and spacecraft systems [8], [9], [10]. It involves 
occasionally terminating an application process, cleaning its 
internal state and restarting it in order to release system 
resources, so that the software performance is recovered. 
One or more indicators of aging can capture the aging 
behavior [1], [4], [19]. Such indicators are measurable 
metrics of the target system likely to be influenced by 
software aging. 

The most popular web server on the Internet, the 
Apache web server [11], is known to suffer from software 
aging [12]. It has been demonstrated that the extent of 
software aging depends on the workload imposed on the 
system. For examples see [1], [12], [13], [14] for Apache 
web server, and see [15], [16] for Axis. Most of the 
previous experimental research on software aging and 
rejuvenation employed Apache web server as a test bed, and 
then used statistical methods to predict the time to resource 
exhaustion [3], [12], [14], [16]. Analytic models used for 
capturing software rejuvenation are based on the 
assumption that the distribution of time to failure due to 
software aging is known, and the aim is to determine the 
optimal times to trigger rejuvenation in order to maximize 
system availability or related measures [4], [15], [17]. 
Whatever approach is used rejuvenation scheduling, such as 
measurement based, analytic, or both, estimated time to 
failure should be obtained more efficiently. Due to the 
difficulty in experimentally studying aging-related system 
failures by observation of failure times, Matias et al. 
develop a systematic approach to accelerate the aging 
effects at the experimental level [18]. They introduce the 
concept of aging factors and use different levels of 
accelerated workload to increase the system degradation. 
Based on the degradation data of selected system 
characteristics, captured through measurements, they apply 
the statistical technique of accelerated degradation tests 
(ADT) to estimate the time to failure in normal condition 
(without acceleration). Alternatively, in [19] the authors do 
not use degradation data, but directly observe failures 
obtained also under accelerated workloads. In this case, 
they use another technique called accelerated life tests (ALT) 
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to estimate the time to failure in normal conditions. In both 
studies the system under test was based on the Apache web 
server. 

Memory leaks are recognized to be one of the major 
causes of resource exhaustion problems in complex 
software, which represent the one of the most serious cause 
of aging. In [20], the authors focus on two types of memory 
problems (fragmentation and leakage) that cause software 
aging, presenting an experimental study on the cumulative 
effect of these problems in software systems [20], [21]. 
Alonso et al. [22] inject memory leaks to intensify memory 
consumption to derive the nonlinear memory resource 
behavior, and then use machine-learning algorithms to 
predict whether software aging has reached a given 
threshold. In this paper, motivated by the ALT method 
discussed in [19], we also inject memory leaks to intensify 
memory consumption so as to accelerate application failure. 
We then derive the estimates of time to failure (TTF) at 
different acceleration levels as well as in normal condition. 
Such an estimate is then used in scheduling software 
rejuvenation. Memory leak is one of the many types of 
aging effects, but any other aging effect (e.g., fragmentation 
problems) can be included in our approach. To the best of 
our knowledge, there are no other approaches to accelerate 
the aging effects in software aging. Comparisons can be 
done using failure data obtained at acceleration levels with 
data collected without acceleration (at normal level) and 
without rejuvenation. The major problem is that without 
acceleration, observing aging related failures would take 
too long a time, which provides the motivation to 
investigate this approach. The requirements to apply it are 
to select the stress variable and their effects on the system 
under test. It is not different than in other engineering areas, 
where several techniques are combined.  

The contribution of this paper is as follows. First, the 
MTTF at normal conditions is obtained by ALT method, 
which greatly reduces the experimental time to derive the 
MTTF. Second, MTTF along with Weibull distribution of 
time to failure is used in a semi Markov model to compute 
the optimum rejuvenation trigger interval. Thus, the 
uniqueness of this paper is in combining experimentation, 
statistics, probabilistic models, and optimization. 

The rest of the paper is organized as follows. In 
Section II we show how to use ALT applied to systems 
suffering from software aging. In Section III, the 
experimental setup and data collection are explained, where 
we describe how memory leak is injected to derive the 
system TTF samples at different acceleration levels. In 
Section IV, we discuss how to use an IPL-lognormal 
analytical model to estimate the mean time to failure for the 
system running at normal level. In Section V, we explain the 
use of the Weibull time to failure distribution along with a 
semi-Markov process in order to optimize the software 
rejuvenation trigger interval with the system availability 
and operational cost as objective functions. Finally, we 
present our conclusions in Section VI. 

II ALT METHOD APPLIED TO SOFTWARE AGING  
Accelerated life tests method (ALT) is successfully 

applied in many engineering fields [23] to significantly 
reduce the experimentation time, which is designed to 
quantify the life characteristics (e.g., mean time to failure) 
of a system under test (SUT). By applying controlled 
stresses to reduce the SUT’s lifetime, the SUT is tested in 
an accelerated mode, and results are then adjusted to its 
normal operational condition. Thus, ALT uses the lifetime 
data obtained under accelerated stresses to estimate the 
lifetime distribution of the SUT for its normal condition. 
This systematic approach can be divided into four main 
steps: 1) selection of accelerating stress, 2) ALT planning 
and execution, 3) definition of the life-stress aging 
relationship, and 4) estimation of underlying life 
distribution (pdf) for the normal condition. The following 
sections will discuss each step in detail. 

A.  Selection of accelerating stress 
A fundamental element during test planning is the 

definition of accelerating stress variable and its levels. 
Typical engineering accelerating stresses are temperature, 
vibration, humidity, voltage, and thermal cycling [23]. 
However, software reliability engineering does not have 
standards, related to software accelerating stresses for ALT. 
Given the nature of aging related faults, we can determine 
suitable accelerating stresses based on experiments. Based 
on [18], we employ memory consumption rate as the stress 
factor and use constant stress loading scheme in this paper. 
We inject memory leaks into a web server software to 
intensify its memory consumption rate. 

B. ALT planning and execution 
After selecting the acceleration factor, we can plan the 

ALT. This activity includes the following elements: number 
of stress levels, the amount of stress applied at each level, 
the allocation proportion in each level, and the sample size. 
In our approach to apply ALT for software components, the 
sample size is the number of test replications. According to 
the theory, the ALT test plans can be classified as: 
traditional, optimal, and compromise plans [23]. The 
traditional plans usually consist of three or four stress 
levels, with the same number of replications allocated at 
each level. The optimal plans specify only two levels of 
stress, high and low. The compromise plans usually work 
with three or four stress levels, and use an unequal 
allocation proportion. A more detailed description of the 
three plans can be found in [23]. In our approach, the 
traditional plan with four levels is used. 

C. Life-Stress aging relationship 
Once the SUT is tested at the selected stress levels, the 

estimate of the mean time to failure (MTTF) at normal 
condition is to be obtained from the TTF samples obtained 
at different stress levels. From the ALT theory, we know 
that the Inverse Power Law (IPL) model fits well ALT 
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applications for positive stress. Therefore, we need to build 
the relationship between life-stress at accelerated and 
normal levels. As an example, consider the life-stress model 
that is known as the Inverse Power Law (IPL) [23]: 

1( ) wL s
k s

�
�

      (1) 

where L represents a SUT life characteristic (e.g., mean 
time to failure), s is the stress level, k (k>0) and w are 
model parameters to be determined from the observed 
failure time samples. 

D. Lifetime Distribution Estimation 
Assuming that the TTF sample is exponentially 

distributed, IPL yields the pdf (probability density function) 
of TTF as: 

( , )
ww ks tf t s ks e��     (2) 

Maximum-likelihood estimation (MLE) method can be 
applied to estimate the model parameters (k, w), and then 
use them to estimate the MTTF, L, for the SUT under 
normal stress level. 

III EXPERIMENTAL SETUP 
We adopt ALT to experimentally study application 

failure affected by software aging. Based on failure time 
samples collected under different stress loadings, the 
estimate of the time to failure distributions at different 
acceleration levels as well as at normal condition are 
obtained. 

A  Test Bed 
To study the aging effects of application failures 

caused by memory leaks, we execute experiments that 
reproduce a typical web application. Our test bed is 
composed of a web server, a database server, and a set of 
clients. The database and web servers are on the same 
physical machine while all the clients occupy another 
physical machine. We have used a multitier e-commerce 
web site that simulates an on-line bookstore. We ran the 
experiments on Tomcat web container, and all HTML pages 
were dynamically generated by the server. In TPC-W 
standard, there are 14 different web pages including home 
page, best selling page, new books page, search page, 
shopping cart and order status page, etc. The web traffic is 
generated by a Remote Browser Emulator (RBE), which 
emulates users of the website. RBE maintains the mix of 
web interactions for EBs. These include three standard 
mixes of web interactions: Browsing Mix, Shopping Mix, 
and Ordering Mix. We use Shopping Mix in our tests. The 
details of these Mixes are shown in the table of TPC-W 
benchmark [24]. The workload is based on the standard 
configuration of TPC-W benchmark. This environment also 
includes Java servlets, MySQL as the database server, and 
Apache Tomcat as the application server [25]. TPC-W 

allows us to run different experiments using different 
parameters and under a controlled environment. TPC-W 
clients, the so-called Emulated Browsers (EBs), access the 
web site in sessions. A session is a sequence of logically 
connected requests (from the EB point of view). Between 
two consecutive requests from the same EB, TPC-W 
undergoes a “thinking phase” [24], representing the time 
between the users receiving the web page requested and 
generating the next request. TPC-W has three kinds of 
workload (Browsing, Shopping, and Ordering). We conduct 
our experiments using Shopping transactions only. Figure 1 
presents the experimental environment used in this work. 

 

Figure 1. Experimental environment 
 

B  Injecting memory leaks 
To emulate the aging effects consuming resources until 

the application failure, we have modified the TPC-W 
implementation by changing the TPCW_search_ 
request_servlet to inject memory leaks. Each memory 
injection causes about 1 megabyte of memory leak. In our 
case, the maximum memory that can be used by JVM is 
128 megabytes. The servlet class relationship including 
TPCW_search_request_servlet is shown in Figure 2. 
Furthermore, we add a piece of code to the servlet so as to 
modify the doGet() method inside TPCW_search_request 
_servlet. 

The doGet() modification is illustrated in Figure 3. A 
random number from 0 to N is generated, where N is 
specified in a configuration file. The randomNumber value 
determines how many requests can use the servlet before 
the next memory leak is injected. This number is decreased 
by one on each invocation of doGet(), i.e., on every visit of 
the search request page. When this number is reduced to 
zero, a new data is appended to the BigObjList and in the 
same time a new randomNumber is generated. Thus, the 
time between memory leaks depends on the frequency of 
the servlet invocations. According to the TPC-W 
specification, this frequency depends on the workload 
chosen. In our experiment, we select the workload to be 100 
EBs. Hence, under high workload our servlet injects 
memory leaks quickly. On the other hand, under low 
workloads the leak rate is lower. But, in the long term the 
average leak rate would depend on the average value of the 
random variable randomNumber, with fluctuations that 
become less relevant when averaged over time. Therefore, 
since the memory consumption rate would depend on the 
value of N, we can simulate this effect by varying N. 
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GenericServlet

init()
service()
destory()
...()

(from javax.servlet)

Node
Object data;
Node next;
Node previous;

Node()

Servlet

init()
service()
destroy()

(from javax.servlet)

<<Interface>> HttpServlet

init()
service()
destory()
...()

(from javax.servlet.http)

BigObjList
Node head;
Node tail;
int length;

isEmpty()
size()
append()
remove()

TPCW_search_request_servlet
int n;
int tandomNumber;
BigObjList bol;

doGet()
readN()

<<use>><<use>>

 
Figure 2. Java servlet class 

 

 
Figure 3. Modification of doGet( )  

The Java heap memory is divided into three main zones: 
Young, Old, and Permanent. A Java object is created in one 
of these heap zones and is garbage-collected after there are 
no references to it. Resource behavior can look quite 
different depending on our monitoring strategy. Memory 
usage by a Java application looks quite different if we 
monitor it from the operating system (OS) level or from 
inside the JVM. From the OS level, when a Java application 
frees up memory objects, it is not possible to perceive the 
changing trend for the memory used. However, if we 
observe it from inside the JVM, then we can obtain accurate 
measures. Permanent Generation stores JVM's internal 
representation of the Java Classes that are mostly static, 
unchanged during the lifetime of JVM. In our experiment, 
we focused on the change of JVM heap, Java Objects. It can 
be justified because the JVM starts reserving a maximum 
amount of memory to be used by dynamic memory 
allocations, and JVM takes care of it without involving the 
OS. This strategy prevents the OS to be aware of the 
allocations and deallocations occurring inside the JVM. 
Therefore, in our experiment we measure memory 

consumption inside the JVM, and collect data on the Young 
and Old heaps [26].  

We use JVM monitoring tool jmap [26] to collect the 
JVM memory exhaustion data. A script written in java on 
the server invokes jmap periodically, and thence obtains the 
memory usages of Young, Old and Permanent. We collect 
Young plus Old used at each five-second interval. The 
Young plus Old used space as well as the capacity when N 
equals 7 is shown in Figure 4(a), and Old memory free is 
shown in Figure 4(c). In addition, Java’s Runtime class 
provides a lot of information about the resource details of 
Java Virtual Machine. Java’s Runtime API is invoked when 
TPCW_search_request_servlet is injected, so that we 
collect runtime memory used by JVM from the servlet 
perspective. This can further account for the memory 
exhaustion at each injection point. Run time memory used 
is shown in Figure 4(c). In Figure 4(a), we see that the 
Young plus Old memory of JVM is used up, since it is close 
to both heaps’ maximal capacity, while in Figure 4(b) we 
see that the runtime memory used is close to the JVM 
capacity. The Young plus Old capacity is shown in Figure 
4(a), and from Figure 4(c), we see that the Old memory free 
is close to zero. From these figures, we can see the memory 
exhaustion of JVM due to memory leaks from different 
perspectives and see that different views are consistent. 

 
Figure 4(a). Young + Old heaps used 

 
Figure 4(b). Run time memory used 
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Figure 4(c). Old heap memory free 

 

IV RESULTS ANALYSIS  
In our experiment, we design four acceleration levels 

(S1 to S4) with N equals to 4, 8, 12, and 16, for each level, 
respectively. We run 7 replications at each acceleration level, 
thus 28 samples are obtained in total. Also, we use the 
algorithm described in [23] to calculate the sample size, 
nALT, thus verifying whether the initial number of samples 
satisfies the criteria of statistical analysis required by the 
ALT method. The nALT can be calculated by solving 
equations from (3) to (7): 

1 1( ... ) /j jx n x n x np� � �           (3) 

 
 

where jx  is the stress level value transformed (loge), 

is the number of replications executed in the jth level of 

stress, and np is the total number of tests executed, given 

that np = n

jn

1+…+nj.  

1( ... ) /
jj j n jy y y n� � � j           (4) 

where  is the transformed (log
jn jy e) value of the jth 

failure time obtained in the level of stress j. 
1

2 2 2
1[( ) ... ( ) ]

j jj j n j j
j

j

y y y y
s

v

� � � � ��� �
� �	 


��
�      (5) 

where vj (vj = nj -1) is the degrees of freedom of the sj, and 
sj is the standard deviation of failure times obtained at jth 
strees level. 

1
2 2 2

1 1 ... j jv s v s
s

v
� � ��� �
� �	 


��
�           (6) 

where v is the number of degrees of freedom calculated as 
v=v1+…+vj, and s is the pooled estimate of the log 

transformed (loge) standard deviation ( ) in (7). 

2

2 2
0

2
1 ( )

( )
ALT

znpn x x
x x



�
�

� �� �
� ��� �� �� �� �� � �� �� �� �� �� � �� �� �� �	 


�

�        (7) 

where 
0x  is the log transformation (loge) of the stress 

value assumed at normal use rate, and z is the tabulated 
value for the standard normal distribution at a given 
significance level � , �  is the precision of the estimate, 
which depends on the fitted pdf and the metric of interest 
for the accelerated failure times, where r� � (for mean) or 

loge r� �  (for median); r is the precision for the estimator 
of interest [23]. When r� � , r is the half width of the 
interval used to calculate the confidence interval for the 
mean. Alternatively, r=(1+m), where ( 100%m� ) is the 
tolerated error for the estimator of the median. 

Based on the experiment results, we calculate the 
mean memory consumption rate from runtime memory used, 
at each acceleration level. For each replication, the memory 
consumption rate is calculated using the Sen’s slope 
estimate method [27]. Sen’s non-parametric method is a 
way to estimate the true slope of the data, that is, if the data 
shows an upward trend, there is evidence of an upward 
trend. These results are shown in Table I. Next, we conduct 
the experiment removing acceleration factors so as to 
calculate the memory consumption rate at normal level. We 
observe that when the workload is equals to 100 EBs, the 
total experimental time is 398790 seconds, or 4.615625 
days. This target is to obtain the memory consumption rate 
at normal level calculated by Sen’s slope. The memory 
consumption rate of Young and Old heaps is approximately 
0.0121kB/s, based on the Sen’s slope estimation method 
(see Figure 5). We use the random number to simulate the 
randomness of requests, and different random number 
values correspond to different memory consumption rates. 
The mean consumption rate is obtained using 7 replications 
at each acceleration level. For example, when the random 
number N equals 16, the mean memory consumption rate is 
56.18 kB/s.  

 
TABLE I. MEMORY CONSUMPTION RATE AND N 

Memory 
consumption 
rate (kB/s) 

N Memory consumption rate per replication 
 

0.0121              normal level 

56.18     16 51.521, 55.986, 57.66, 62.102, 51.851, 
52.844, 61.295, 56.18 

69.341    12 69.838, 73.844, 65.769, 70.645, 65.832, 
63.443, 76.019, 69.341 

97.613    8 90.067, 93.847, 102.38, 100.16, 98.2, 101.87, 
96.765, 97.613 

166.39 4 157.44, 160.57, 179.87, 176.88, 155.07, 
164.93, 169.97, 166.39 
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Figure 5. Memory consumption rate of Young plus Old heaps 

calculated using Sen’s slope method. 
 
The samples of failure times at each acceleration level 

are shown in Table II. It corresponds to the application 
failures caused by out of memory. According to [18], we 
evaluate the probability distributions Weibull, Lognormal, 
and Exponential to identify the best fit. The criterion used 
to build the best-fit ranking is the log-likelihood function 
(Lk) [28]. 

 
TABLE II. SAMPLE OF FAILURE TIMES (SECONDS) 

TTF (S1)  TTF(S2) TTF(S3) TTF(S4)
455 665 965 1230 
425 670 930 1155 
430 655 1005 1160 
440 685 930 1060 
465 720 1000 1065 
465 640 1000 1185 
430 715 935 1360 

 
TABLE III. SAMPLE OF LOG TRANSFORMED ACCELERATION DATA 

TTF (S1)  TTF(S2) TTF(S3) TTF(S4)
6.1203 6.4998 6.8721 7.1148 
6.0638 6.5073 6.8352 7.0519 
6.0521 6.4846 6.9127 7.0562 
6.0868 6.5294 6.8352 6.9660 
6.1420 6.5793 6.9078 6.9707 
6.1420 6.4615 6.9078 7.0775 
6.0638 6.5723 6.8405 7.2152 

TABLE IV. RESULTS OF MODEL FITTING FOR ACCELERATED FAILURE 
TIMES 

Accelerated level Model Lk Best-fit Ranking 
16 (S1) Lognormal  

Weibull 
Exponential 

-41.6922  
-42.5207 
-56.4746 

1st 

2nd

3rd

12 (S2) Lognormal  
Weibull 
Exponential 

-34.3337 
-34.3237 
-55.1153 

2nd

1st

3rd

8 (S3) Lognormal  
Weibull 
Exponential 

-33.3200  
-33.6147 
-52.6399 

1st

2nd

3rd

4 (S4) Lognormal  
Weibull  
Exponential 

-29.3888  
-29.5596 
-50.2522  

1st 
2nd

3rd

 

The natural logarithms of acceleration sample data sets 
are shown in Table III. We calculate nALT to be 25 using 
formula (3) to (7), which is the minimum number of 
samples needed for our ALT test plan. Since this number is 
smaller than we obtained in our sampling, we satisfy the 
ALT assumptions for sample size. 

The fitting results for these four models are shown in 
Table IV. The Lognormal distribution provides the best 
fitting results for acceleration levels S1, S3, S4, and its 
fitting result is close to Weibull’s at acceleration level S2, 
so we chose Lognormal combined with IPL model to create 
our life-stress relationship model. The probability density 
function (pdf) of Lognormal is shown in Equation 8.  

21 ( )
21( )

2
t

t t

t

f t e
t



 �

�

�

��
�

�

�            (8) 

where, t = time to failure, t´=ln(t), t� = mean of the natural 
logarithms of the time to failure, �t´=standard deviation of 
the natural logarithms of the failure times.  

The life characteristic for the Lognormal distribution 
is its median value that is given by (9) 

tt e ��
�

.                  (9) 

The pdf for the IPL-lognormal model can be obtained 
first by setting ( )t L v�

�
 in (1). Then 

1( )t
we L v

k v
� � �

�
 ,           (10) 

therefore,  

ln( ) ln( )t k w v� � � � ,         (11) 

thus substituting (11) into (8) yields the IPL-lognormal pdf 
as shown in (12). 

21 ln( ) ln( )( )
21( )

2
t

t k w v

t

f t e
t
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�

�� �
�

�

�     (12) 

As a result, (13) can be directly derived from (12) and 
used to estimate the mean time to failure, MTTF, of the 
SUT at a specific use rate. 

2ln( ) ln( )( ) tk w vMTTF v e  �� � ��        (13) 

TABLE V. PARAMETER ESTIMATION OF LOGNORMAL MODEL 

90% confidence interval  Accelerated 
level Parameter ML 

estimate  Lower Upper

S1 �1
�1

7.0646 
0.0923 

7.0072 
0.0526

7.1220 
0.1622

S2 �2
�2

6.8730 
0.0373 

6.8498, 
0.0222

6.8962 
0.0627

S3 �3
�3

6.5192 
0.0479 

6.4894 
0.0269

6.5490 
0.0854

S4 �4
�4

6.0958 
0.0408 

6.0705 
0.0236

6.1212 
0.0705
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In order to verify the scale of invariance, we verify 
whether the estimated  and values at each acceleration 
level are inside the same confidence interval. Table V gives 
the parameter estimation of lognormal model by the ML 
estimation method [23]. 

The estimated IPL-lognormal parameters are listed in 
Table VI. We use Equation 12 to estimate the underlying 
life distribution for the normal condition. Figure 6(a) 
presents the fit of the IPL-lognormal model estimated from 
the four stress levels, and for the normal condition. Figure 
6(b) shows the failure and stress relationships. The 
calculated estimate for time to failure (x-axis) at the normal 
level starts at 0.0124. As a result, we can obtain the MTTF 
for the normal level from this model that equals to 
2.1114E+6 seconds (24.4375 days). The 90% confidence 
interval is (1.3503E+6, 3.3014E+6) seconds - about (15.63, 
38.21) days. 

TABLE VI. IPL-LOGNORMAL PARAMETERS 
90% confidence intervalParameter ML Estimate Lower Upper

k 2.3225E-5 1.8529E-5 1.8529E-5
w 0.8979 0.8478 0.9480
  0.0555 0.0427 0.0721
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Figure 6(a). The IPL-lognormal model’s ML estimates and 90% 

confidence intervals for F(t) at normal level 
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Figure 6(b). Failure and stress levels by the IPL-lognormal model 

estimation 
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Figure 7(a). Probability plot for the normal condition level 
 
Figure 7(a) presents the probability plot for the normal 

condition level, and the standardized residuals plot is shown 
in Figure 7(b), which confirms the good fit of the estimated 
model. 

From these analysis results of tables and figures, we 
can see the experimental costs to obtain the metric of the 
normal TTF at experimental level, is greatly reduced. In 
addition, the estimates of the time to failure distributions at 
different acceleration levels as well as normal condition are 
obtained. These results can be used to further schedule 
software rejuvenation, and thus improve the software 
availability, and reduce the maintenance costs. 
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Figure 7(b). Standardized residuals. 

 

IV OPTIMAL SOFTWARE REJUVENATION 
Based on the results discussed in Section V, we employ 

the preventive maintenance model presented by Chen and 
Trivedi in [29], using the Weibull time to failure 
distribution. We optimize the software rejuvenation trigger 
interval in order to maximize the system availability or 
minimize the operational cost. Figure 8 shows this model. It 
consists of three states: UP state, or state 0, in which the 
system is up; RJ state, or state 1, in which the system is 
undergoing software rejuvenation, and DOWN state, or 
state 2, in which the system is down and under reactive 
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repair. State 0 is the only available state. From state 0 the 
system will enter state 1 with a general distribution function 
F0(t), for the software rejuvenation trigger interval, or fail 
and enters into state 2 with a general time to failure 
distribution F2(t). The distribution function for the duration 
of software rejuvenation (proactive repair) is F1(t), and the 
distribution function for the duration of reactive repair is 
F3(t). This model is a semi-Markov process [28]. 

 

 
Figure 8.  Rejuvenation model. 

 
We assume that the rejuvenation trigger interval is 

deterministic (t0) and the mean time to carry out the 
rejuvenation and reactive repair are t1 and t2, respectively. 
The two-parameter Weibull pdf for TTF is given by: 

( )
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where,  
( ) 0f t # , ,0t # 0! $ , 0" $ , 

� = scale parameter, 
�=shape parameter (or slope), 
The CDF of this Weibull distribution is given by: 
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The sojourn time in UP state is then given by:  
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where 1 1( , ) 0( )
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!
� �� &

%
is the incomplete 

gamma function. Hence, we can get the steady state 
availability: 

0
(1 ( )) ( )0 0 1 0

h
Aweib h F t t F t t

�
� � � 2

      (17) 

The IPL-Weibull model can be derived by setting � 
=L(v), yielding the following IPL-Weibull pdf: 

( )1( , ) ( )
wKV tw wf t V kV KV t e

!!! ���    (18) 

This is a three-parameter model. The estimated 
IPL-Weibull parameters are listed in Table VII.  

 
 
 
 

TABLE VII. IPL-WEIBULL PARAMETERS 
90% confidence intervalParameter ML 

Estimate Lower Upper
� 15.2094 11.7317 19.7182
k 2.9252e-5 2.3644e-5 3.6189e-5
w 0.8696 0.8212 0.9180

We obtain the MTTF at normal level as 8.7804E+5 
seconds when memory consumption rate at normal level is 
0.0124 kB/s. The 90% confidence interval of MTTF at 
normal level is (5.4424E+5, 1.4166E+6) seconds. 
Correspondingly, for the parameter � confidence interval is 
denoted by (�low, �high) and is computed as (5.4424E+5, 
1.4166E+6). Also, the parameter ! confidence interval, 
denoted by, ( , ) is (11.7317, 19.7182) as shown 

in Table VII. 
low! high!

Therefore, from (17) we derive the steady state 
availability A=Aweib(�,�), and its confidence interval 
Alow=Aweib(�low,, �low), Ahigh=Aweib(�high,, �high). We assume that 
the mean duration for carrying out software rejuvenation, t1, 
is 1 minute, and the mean time for reactive repair, t2, is 5 
minutes. Steady-state availability vs time to rejuvenation 
trigger, t0, assuming the Weibull time to failure distribution 
is shown in Figure 9. The optimal time to trigger 
rejuvenation and the corresponding availability are marked 
in this figure. In this case, the optimal choice of 
rejuvenation trigger interval could accrue availability 
improvement. 

Another objective function is to minimize the expected 
cost. A cost of C f  per minute is incurred when the system 

is down due to system failure, and a cost of C f�  is 

incurred for each reactive repair carried out; a cost of C p  

per minute is incurred when the system is down for carrying 
out software rejuvenation, and a cost of C p�  is incurred for 

each rejuvenation action carried out. The total expected cost 
per minute is thus 

/ /2 2 2 1 1C C C t C C tf f p p� � � �� �� � � � 1 , 

where  and  are the average number of 
reactive repairs and rejuvenation executions per minute, 
respectively. 

/2 2t� /1 1t�

We assume that , . 

Let C=C(�,�), C

1 / 60C Cp p�� � 5 / 60C Cf f�� �

low= C(�low,,�low), and Chigh= C(�high,,�high), 
so we derive the cost C, Clow and Chigh. The average cost vs. 
time to rejuvenation t0 is shown in Figure 10. The optimal 
intervals for the cost models are as short as 5930 to 17810 
minutes, while the optimal intervals for the availability 
models are 6590 to 18980 minutes. 
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Figure 9. Steady-state availability vs time to rejuvenation t0

 

 
Figure 10. Average cost vs. time to rejuvenation t0  

 
 

V CONCLUSION 
In this paper, we develop experiments that simulate 

software aging in an on-line bookstore application. We 
study the effects of software failures caused by memory 
leaks using the accelerated life tests method, following the 
standard workload of the TPC-W benchmark. Based on the 
collected data on the JVM memory consumption, first the 
memory consumption rate was selected as the acceleration 
factor. Secondly, the IPL-lognormal model was built to 
estimate TTF at normal level. Thirdly, Weibull time to 
failure distribution is used in a semi-Markov process, to 
optimize the software rejuvenation trigger interval so as to 
maximize the availability or minimize the operational cost. 

Results show that the MTTF at normal use condition is 
24.4375 days. A considerable reduction in experimentation 
time is achieved by using the ALT method. Four stress 
levels and 7 replications are used at each stress level. The 
experimental time of each replication varies from 425 
seconds to 1360 seconds. Another contribution of this paper 
is that we use the results of TTF distribution estimates to 
optimize the software rejuvenation trigger interval. Since 

the known closed form result is only for the Weibull time to 
failure distribution we use that over Lognormal. Our results 
show only minor difference between the goodness of fit 
between the Weibull and the Lognormal. We also compute 
the availability confidence interval and operational cost at 
the optimal rejuvenation trigger interval using the estimated 
parameters from our experiments.  
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