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Abstract— Iterative method selection is crucial for solving
sparse linear systems because these methods inherently lack
robustness. Though image-based selection approaches have
shown promise, their feature extraction techniques might en-
code distinct matrices into identical image representations,
leading to the same selection and suboptimal method. In
this paper, we introduce RAF (Relative-Absolute Fusion), an
efficient feature extraction technique to enhance image-based
selection approaches. By simultaneously extracting and fusing
image representations as relative features with corresponding
numerical values as absolute features, RAF achieves compre-
hensive matrix representations that prevent feature ambiguity
across distinct matrices, thus improving selection accuracy and
unlocking the potential of image-based selection approaches. We
conducted comprehensive evaluations of RAF on SuiteSparse
and our developed BMCMat (Balanced Multi-Classification
Matrix dataset), demonstrating solution time reductions of
0.08s-0.29s for sparse linear systems, which is 5.86%-11.50%
faster than conventional image-based selection approaches and
achieves state-of-the-art (SOTA) performance. BMCMat is
available at https://github.com/zkqq/BMCMat.

I. INTRODUCTION

Solving sparse linear systems, as shown in Eq. 1, is a
fundamental task in scientific computing.

Ax = b (1)

where A ∈ Rn×n denotes a sparse coefficient matrix, b ∈ Rn

represents the right-hand side vector, and x ∈ Rn is the
unknown solution vector [1]. Such systems are typically
solved through either direct methods [2] or iterative methods
[3]. For large-scale systems, solving Eq. 1 is computationally
intensive, especially accounting for over 70% of the total
computation time in reservoir engineering [4]. This compu-
tational burden has prompted the widespread adoption of iter-
ative methods, which inherently exhibit lower computational
complexity. However, iterative methods demonstrate limited
robustness. An appropriate iterative method can solve the
system efficiently, whereas an unsuitable one may result in
slow convergence or divergence. Unfortunately, selecting an
optimal (fastest convergence) iterative method for a given
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Fig. 1: Motivation for RAF. Conventional feature extrac-
tion techniques in image-based selection approaches encode
distinct matrices A1 and A2 into identical RGB image
representations, yielding the same selection method (CG &
SSOR). Although the CG & SSOR method efficiently solves
A1x = b, it exhibits poor performance for A2x = b.

linear system remains challenging, often relying on trial and
error or expert intuition [5].

Deep learning advances have driven research into se-
lecting optimal iterative methods for sparse linear systems
based on the features of matrix A. Early studies utilized
Fully Connected (FC) networks to select optimal methods
based on manually identified numerical features from A [6].
Subsequent approaches modeled A as a topological graph
and employed Graph Neural Network (GNN) for selection
[7]. The SOTA work involves image-based selection, which
encodes A as an RGB image and applies Convolutional
Neural Network (CNN) for efficient selection [8], [9].

Although image-based selection approaches achieve SOTA
performance, their feature extraction techniques may encode
distinct matrices into identical RGB image representations,
potentially leading to suboptimal method selection. As illus-
trated in Fig. 1, although CG & SSOR is deemed optimal
for both matrices A1 and A2, it is only truly appropriate
for the strongly diagonally dominant matrix A1, whereas
the weakly diagonally dominant matrix A2 is solved more
efficiently using CG & ω-Jacobi. This limitation stems
from feature extraction techniques that compute RGB image
representations, incorporating only relative matrix features
while omitting absolute ones. For instance, the red chan-
nel computation biases non-zero elements by subtracting
the matrix’s minimum value (Eq. 3c) and subsequently
normalizes the results (Eq. 3a), thus capturing only the
relative magnitude relationships between matrix elements.
The exclusion of absolute features may allow matrices with
varying magnitudes to yield identical red channels, leading



to feature ambiguity and limiting the effectiveness of image-
based selection approaches.

Rethinking feature extraction techniques in image-based
selection approaches, we propose RAF, an efficient feature
extraction technique that addresses existing limitations. RAF
extracts both image representations as relative features and
corresponding numerical values as absolute features, subse-
quently fusing these complementary features to achieve com-
plete matrix representations and eliminate feature ambiguity
across distinct matrices. For instance, when computing the
red channel, RAF simultaneously extracts the matrix’s min-
imum value as a bias reference, which characterizes matrix
magnitude as an absolute feature, ensuring comprehensive
representation of non-zero element magnitudes after fusion,
preventing matrices with varying magnitudes from yielding
identical features. Our proposed RAF mitigates information
loss typically associated with purely relative features and
enhances the efficiency of image-based selection approaches.

Our contributions can be summarized as follows:
• We developed BMCMat based on Partial Differential

Equation (PDE) discretization to mitigate label im-
balance in the widely used SuiteSparse dataset [10],
facilitating research on iterative method selection for
sparse linear systems (§ II-B).

• We introduce RAF, an efficient feature extraction tech-
nique that extracts and fuses relative and absolute matrix
features to eliminate feature ambiguity across matrices,
unlocking the potential of image-based method selec-
tion. (§ II-C, II-D)

• We comprehensively evaluated RAF on SuiteSparse
and BMCMat, demonstrating selection accuracy im-
provements of 0.022-0.039 and solution time reductions
of 0.08s-0.29s for linear systems, which is 5.86%-
11.50% faster than conventional image-based selection
approaches. To our best knowledge, RAF achieves
SOTA performance in method selection (§ III-B).

II. METHODOLOGY

The efficacy of deep learning fundamentally depends on
two critical factors: high-quality training data and effective
algorithm design. This section enhances iterative method
selection through dual innovations: improved dataset and
optimized model.

A. Problem Formulation

Iterative method selection fundamentally establishes a
mapping f from a given matrix A to the optimal method, as
shown in Eq. 2.

y = f(A) (2)

where y denotes an iterative method, comprising a solver
and a preconditioner. Consequently, method selection can
be formulated as a multi-class classification problem. For
a set of linear systems with k available iterative methods,
each matrix A is assigned an k-dimensional label vector
{0, 1}k, where only the element corresponding to the optimal
method is 1, and the remaining k− 1 entries, corresponding
to suboptimal methods, are 0.

TABLE I: Common iterative methods comprising various
solvers and preconditioners [1], [11].

Iterative Methods
Solvers Preconditioners

CG F-CG ω-Jacobi Blocked Jacobi
GMRES F-GMRES G-S SSOR

L-GMRES BICG GMG AMG
GCR BICGSTAB DDM ILU
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Fig. 2: Distribution of optimal iterative methods across
datasets. For clarity, only seven methods with the highest
percentages are listed for the SuiteSparse dataset.

B. BMCMat

Effective k-class classification in deep learning relies on
high-quality training data due to its inherently data-driven
nature.

We initially examined the widely adopted SuiteSparse
dataset, from which we extracted 576 matrices A ∈ Rn×n

with 1000 ≤ n ≤ 10000 [7]. Using common iterative
methods from the PETSc library [1], [11] listed in Table
I, we determined the optimal method for each matrix. No-
tably, although 64 (8 × 8) theoretical solver-preconditioner
combinations are possible, only a subset was computationally
feasible, and an even smaller fraction demonstrated optimal
performance. Finally, the method selection was formulated
as a 25-class classification task, as illustrated in Fig. 2a,
revealing significant class imbalance within the SuiteSparse.
The CG & SSOR method constitutes over 50% of all
cases, while 19 other methods individually represent less
than 1% of the data. This imbalance introduces a selection
bias toward dominant classes (e.g., CG & SSOR). Although
such bias may yield high selection accuracy, it significantly
compromises performance on minority classes, leading to
suboptimal method selection for specific linear systems.

To address this limitation, we developed BMCMat, a
relatively balanced multi-class classification Matrix dataset.
Specifically, we generated 50,000 linear systems Ax = b
with 1000 ≤ n ≤ 10000 using OpenMat [12], a parallel
sparse matrix generator based on PDE discretization, and
applied iterative methods in Table I to identify the optimal
method for each system. We then extracted 3,819 matrices
from these systems to construct BMCMat, which contains



seven distinct method classes, as illustrated in Fig. 2b.
Compared to SuiteSparse, BMCMat exhibits a more balanced
class distribution, with a maximum class ratio of only 2:1.
This balanced distribution improves feature learning across
method classes, thereby enhancing the model’s ability to
accurately select optimal methods for diverse linear systems
in practical applications.

C. RAF

In addition to high-quality training data, an efficient algo-
rithm is crucial for k-class classification in deep learning.

Conventional feature extraction techniques in image-based
selection approaches involve three sequential steps: (1) defin-
ing image resolution m, (2) partitioning matrix A into m2

blocks, and (3) computing RGB channels for each pixel,
representing its corresponding block. Each RGB channel
captures distinct matrix features: the red channel represents
non-zero element magnitudes (Eqs. 3a, 3b, 3c, 3d), the blue
channel encodes matrix dimensions (Eq. 3e), and the green
channel quantifies non-zero element density (Eq. 3f) [8], [9].
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Here, indices i, j ∈ {1, . . . ,m} identify specific blocks
within the partitioned matrix. δ represents the matrix value
range, with min(A) and max(A) denoting the minimum
and maximum values, respectively. v(a) denotes the biased
value of matrix element a. NNZij counts the number of
non-zero elements in block Aij , while γij represents their
biased average. NA indicates the matrix order, while Nmin

and Nmax denote the minimum and maximum matrix orders
in the dataset, respectively. The order of each block, Nb, is
approximated by Nb ≈ NA/m.

Such feature extraction techniques that focus solely on
relative relationships cannot completely represent matrices,
leading to identical relative feature extraction for distinct
matrices due to the absence of critical absolute features (Fig.
1), thus limiting the effectiveness of image-based selection
approaches. This limitation arises primarily because matrices
with varying magnitudes but identical ranges may yield
identical red channel values owing to the bias (Eq. 3c) and
normalization (Eq. 3a). Furthermore, linear and logarithmic
block-wise averaging can generate identical γ values despite
different biased inputs v(a), further contributing to feature
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Fig. 3: Comparison between conventional feature extraction
techniques (left) and RAF (right) in image-based selec-
tion approaches. RAF simultaneously extracts relative image
representations and corresponding absolute numerical val-
ues, yielding comprehensive matrix features for enhanced
characterization. Notably, because NA demonstrates higher
effectiveness than the blue channel, RAF retains only the red
and green channels in the image representation.

ambiguity (Eqs. 3b, 3d). Moreover, the reliance of the blue
and green channels on the values Nmin, Nmax, and Nb limits
the accuracy of matrix representation.

To address these limitations, we propose RAF, an ef-
ficient feature extraction technique for enhancing image-
based selection approaches. As illustrated in Fig. 3, RAF
employs a dual-feature strategy that simultaneously extracts
image representations as relative features along with cor-
responding numerical values as absolute features to create
comprehensive matrix representations. For non-zero element
magnitudes, RAF extracts both the red channel and the
absolute boundary values min(A), max(A), min(γ), and
max(γ) (Eqs. 3a, 3b) for complete characterization. For
dimensionality, RAF uses the matrix order NA (Eq. 3e) to
fully characterize the matrix size. Interestingly, since NA
provides complete dimensional information, RAF eliminates
the blue channel to reduce feature redundancy. For non-
zero element density, RAF extracts both the green channel
and the block order Nb (Eq. 3f) to characterize the sparsity
pattern. For the matrices A1 and A2 shown in Fig. 1, when
extracting the red and green channels, RAF also extracts
min(A1) = 1, max(A1) = 10, min(A2) = 91, and
max(A2) = 100 to distinguish between them and avoid
feature ambiguity. Additionally, RAF extracts min(γ) = 1,
max(γ) = 5.5, Nb = 2, and NA = 4 for a more precise
characterization of the matrices. Finally, relative and absolute
features are fused to select the optimal iterative method for
linear systems (§ II-D). By extracting and fusing relative
image representations with absolute numerical values, RAF
achieves more complete matrix representations, enhancing
image-based selection approaches to better differentiate ma-
trices and improve selection accuracy.

D. Image-Based Method Selection with RAF

After introducing the efficient RAF, the next step is to
consider its integration into the image-based method selec-
tion architecture.

As illustrated in Fig. 4, the image-based method selec-
tion with RAF comprises three components: (a) extracting
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Fig. 4: Pipeline for image-based iterative method selection with RAF. Component (a) extracts the red and green channels
as relative matrix features, which are subsequently learned via convolution to capture spatial patterns within the matrix.
Component (b) simultaneously extracts six corresponding numerical values as absolute matrix features and learns them
through linear layers. Finally, component (c) fuses these features to select the optimal iterative method for the given matrix.

and learning the matrix’s relative features, (b) extracting
and learning the matrix’s absolute features, and (c) fusing
features to select the optimal iterative method for the input
matrix. As RAF, component (a) exclusively extracts red and
green channel image representations as the matrix’s relative
features. The red and green channels of the 256 × 256
pixel image undergo transformed into a 64 × 64 × 64
tensor via sequential operations: a 3× 3 convolution (Conv)
with 32 filters, 2 × 2 max pooling (Pool), followed by a
3 × 3 convolution with 64 filters, and a final 2 × 2 max
pooling. To match the dimension of the absolute feature
vector, this tensor is subsequently flattened and reduced to a
256-dimensional vector through a linear transformation with
ReLU activation. Simultaneously, component (b) extracts
six corresponding numerical values representing the matrix’s
absolute features, expanding this feature vector to 256 dimen-
sions via two sequential linear transformation layers, each
followed by ReLU activation. Finally, in component (c), the
two 256-dimensional vectors (relative and absolute features)
are concatenated (Cat) to form a unified 512-dimensional
feature vector. This combined vector passes through two
linear layers, with a dropout rate of 0.5 applied to the first
layer to mitigate overfitting. The second layer contains k
neurons, where k corresponds to the number of candidate
methods in the dataset (SuiteSparse: k = 25; BMCMat:
k = 7). The output represents probability distributions across
all candidate methods, wherein the method exhibiting the
highest probability is selected as optimal for the given matrix.

III. EXPERIMENT

A. Experimental Setup

Models and parameters. We evaluated four iterative
method selection models: existing FC [6], GNN [7], CNN
[8], [9], and our proposed image-based approach with RAF
(simplified as RAF). All models were trained on an A6000

TABLE II: Solution time and slowdown of existing models
and RAF on SuiteSparse and BMCMat.

SuiteSparse BMCMat
Model Time↓ Slowdown↑ Time↓ Slowdown↑

FC 0.70 0.31 5.18 0.77
GNN 0.70 0.31 5.45 0.73
CNN 0.68 (Base) 0.32 (Base) 4.95 (Base) 0.81 (Base)

RAF 0.61 (-0.07) 0.36 (+0.04) 4.66 (-0.29) 0.86 (+0.05)

GPU using SuiteSparse [10] and BMCMat. For RAF, we
employed a learning rate of 8e-4, a batch size of 64, and
early stopping with a maximum of 100 epochs. All linear
systems were solved using the PETSc library on an Intel
Xeon 8352V CPU with 256 GB RAM.

Metrics. We evaluated model performance using the fol-
lowing quantitative metrics:

• Solution time (s): The walltime for solving linear sys-
tems using model-selected iterative methods.

• Slowdown: The ratio of optimal method computation
time to the model-selected method time. Values closer
to 1 indicate the selected method optimal performance.

• Selection Accuracy: The probability that the model
correctly selects the optimal method.

• Top-n Selection Accuracy: The probability that the opti-
mal method is included in the model’s top n selections.
Higher values indicate the model’s ability to rank the
optimal method among its top choices, demonstrating
practical effectiveness.

B. Effectiveness

Table II compares the solution times of four iterative
method selection approaches on the SuiteSparse and BMC-
Mat datasets. RAF demonstrates SOTA performance, achiev-
ing the fastest solution times among all evaluated approaches.
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On SuiteSparse, RAF reduces solution times by 0.08s-
0.10s compared to competing models, yielding speedups of
1.13x-1.16x. For BMCMat, RAF decreases solution times
by 0.29s-0.79s relative to alternative approaches, achieving
speedups of 1.06x-1.17x. RAF’s superior performance can
be attributed to its ability to more effectively extract matrix
features compared to conventional image-based approaches,
thus charactering matrix completely and avoiding feature am-
biguity. Table II further validates these findings by comparing
the slowdown across all four approaches on both datasets.
RAF achieves optimal slowdown of 0.36 and 0.86 on SuiteS-
parse and BMCMat, respectively, outperforming competitors
by margins of 0.04-0.12, confirming its selection of near-
optimal methods and further demonstrating its superiority.

Figs. 5 and 6 present the selection accuracy and top-
n accuracy, where RAF achieves SOTA performance on
both SuiteSparse and BMCMat. For selection accuracy, RAF
outperforms existing models by margins of 0.039-0.048 on
SuiteSparse and 0.022-0.055 on BMCMat with advanced fea-
ture extraction and learning mechanisms, directly translating
to reduced solution times in practical applications. As further
illustrated in Fig. 6, RAF consistently maintains its advantage
in top-n selection accuracy, indicating superior selection
quality and enhanced reliability for method selection.
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refers to the RAF variant with all numerical values removed
and “None” represents the complete RAF.

C. Ablation Study

Compared to conventional image-based method selection,
the key innovation of RAF lies in the extraction and fusion
of relative image representations with six absolute numerical
values, enabling more precise matrix characterization and
improved selection accuracy. We conducted an ablation study
to quantify the contribution of each numerical value to RAF
performance. Experimental results evaluated on SuiteSparse
and BMCMat are presented in Table III and Fig. 7. Over-
all, removing any single numerical value degraded model
performance, albeit to varying degrees. Compared to the
complete RAF, removing a single numerical value decreased
selection accuracy (top-1) by 0.006-0.030, increased solu-
tion time by 0.01s-0.19s, reduced computational efficiency
by 0.98%-7.07%, and decreased slowdown by 0.004-0.034
across both datasets. These observations confirm that each
numerical value in RAF contributes positively to model
performance, collectively forming a complementary feature
representation system. Furthermore, removing all numerical
values significantly degraded model performance, resulting
in performance below that of a conventional CNN. This
underperformance occurs because, without numerical values,
RAF is reduced to a conventional CNN lacking the blue
channel features, further validating the contribution of matrix
dimension (NA) features to method selection.

IV. RELATED WORK

Early method selection predominantly utilized machine
learning. Initially, Alternating Decision Trees were applied
for method selection leveraging matrix features [13]. A sub-



TABLE III: Ablation study results showing selection accuracy, speedup, and slowdown for RAF variants on SuiteSparse
and BMCMat. Numerical values are represented by symbols, with “✓” signifying presence and “✗” signifying absence. The
best and worst performance are illustrated with corresponding colors. Results of complete RAF are displayed in bold.

Numerical Value Metric
Dataset NA Nb min(A) max(A) min(γ) max(γ) Selection accuracy↑ Solution time↓ Slowdown↑

SuiteSparse

✓ ✓ ✓ ✓ ✓ ✓ 0.677 (Base) 0.605 (Base) 0.364 (Base)
✗ ✓ ✓ ✓ ✓ ✓ 0.647 (-0.030) 0.651 (+0.046) 0.338 (-0.026)
✓ ✗ ✓ ✓ ✓ ✓ 0.661 (-0.016) 0.622 (+0.017) 0.354 (-0.010)
✓ ✓ ✗ ✓ ✓ ✓ 0.669 (-0.008) 0.611 (+0.006) 0.360 (-0.004)
✓ ✓ ✓ ✗ ✓ ✓ 0.648 (-0.029) 0.645 (+0.040) 0.341 (-0.023)
✓ ✓ ✓ ✓ ✗ ✓ 0.662 (-0.015) 0.615 (+0.010) 0.358 (-0.006)
✓ ✓ ✓ ✓ ✓ ✗ 0.654 (-0.023) 0.635 (+0.030) 0.346 (-0.018)
✗ ✗ ✗ ✗ ✗ ✗ 0.603 (-0.074) 0.730 (+0.125) 0.301 (-0.063)

BMCMat

✓ ✓ ✓ ✓ ✓ ✓ 0.651 (Base) 4.660 (Base) 0.858 (Base)
✗ ✓ ✓ ✓ ✓ ✓ 0.645 (-0.006) 4.751 (+0.091) 0.842 (-0.016)
✓ ✗ ✓ ✓ ✓ ✓ 0.642 (-0.009) 4.806 (+0.146) 0.832 (-0.026)
✓ ✓ ✗ ✓ ✓ ✓ 0.643 (-0.008) 4.788 (+0.128) 0.835 (-0.023)
✓ ✓ ✓ ✗ ✓ ✓ 0.645 (-0.006) 4.752 (+0.092) 0.842 (-0.016)
✓ ✓ ✓ ✓ ✗ ✓ 0.644 (-0.007) 4.764 (+0.104) 0.840 (-0.018)
✓ ✓ ✓ ✓ ✓ ✗ 0.638 (-0.013) 4.852 (+0.192) 0.824 (-0.034)
✗ ✗ ✗ ✗ ✗ ✗ 0.617 (-0.034) 5.302 (+0.642) 0.754 (-0.104)

sequent study employed Decision Trees and proposed three
strategies based on composite methods [14]. For transient
simulations, WEKA and MULAN were used, implementing
K-Nearest Neighbors, Random Forests, and Decision Trees
[15]. The Lighthouse framework integrated several machine
learning algorithms, including BayesNet and Random Forest,
to select methods from the PETSc and Trilinos libraries [16].

Advances in deep learning have spurred research into
its application for method selection, surpassing traditional
machine learning due to its superior feature learning and
handling of non-linear relationships. Early studies employed
FC for solver selection with 18 matrix features [6]. Subse-
quent research modeled matrices as topological graphs with
five node and ten graph features, using GNN for method
selection [7]. Current SOTA approaches encode matrices
as images, employing CNN to capture spatial patterns for
method selection [8], [9]. In contrast, RAF enhances image-
based approaches by extracting and fusing relative image rep-
resentations with absolute numerical values, thereby compre-
hensively characterizing matrices and unlocking the potential
of image-based iterative method selection.

V. CONCLUSION

In this paper, we introduce RAF, an efficient feature extrac-
tion technique that enhances image-based iterative method
selection for solving sparse linear systems. RAF simultane-
ously extracts image representations as relative features and
corresponding numerical values as absolute features, fusing
them to enhance matrix representations, thereby improving
selection accuracy and accelerating linear system solutions.
Additionally, we developed BMCMat, a balanced matrix
dataset constructed through PDE discretization to facilitate
method selection research. We comprehensively evaluated
RAF on both SuiteSparse and BMCMat, demonstrating its
SOTA performance, with improved selection accuracy by
0.02-0.06 and reduced solution times by 0.08s-0.79s, yield-
ing 1.06x-1.17x higher computational efficiency compared to
existing method selection approaches.
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