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a b s t r a c t

Particle filter is a powerful tool for vision tracking based on Sequential Monte Carlo framework. The core
of particle filter in vision tracking is how to allocate particles to a high posterior area. Particle Swarm
Optimization (PSO) is applied to find high likelihood area in this paper. PSO algorithm can search the
sample area around the last time object position depending on current observation. So, it can distribute
the particles in high likelihood area even though the dynamic model of the object cannot be obtained. Our
algorithm does not distribute the particles based on the weight of the particles last time like the sam-
pling-importance resampling (SIR). SIR usually allures particles distributed in wrong likelihood area par-
ticularly tracking in cluttered scene. Since that some particles have larger weight maybe illusive. We first
find the sample area by PSO algorithm, then we distribute the particles based on two different base points
in order to achieve diversity and convergence. Experimental results in several real-tracking scenarios
demonstrate that our algorithm surpasses the standard particle filter on both robustness and accuracy.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, there has been a great deal of interest in apply-
ing particle filtering by Arulampalam, Maskell, Gordon, and Clapp
(2002), also known as Condensation (Isard & Blake, 1998), to com-
puter vision problems. Applications on rigid or non-rigid object
tracking has demonstrated its usefulness (Choo & Fleet, 2001;
Zhang & Pece, 2003).

The most appealing aspect of PF is to maintain multiple hypoth-
esis of a state, which makes them more competent for heavily clut-
tered and complex scenes. However, PF are not always satisfactory,
especially when the irregular and abrupt motion renders a weak
dynamic model in real scenes (Chang & Ansari, 2005). There is a
motion model in the transition equation. The motion model can
help distribute the particles in the right sample area. But some-
times we do not know the motion model of the object. If we do
not use the motion model, the particles may be distributed in the
wrong sample area when the object is similar to background
(Zhang & Pece, 2003).

The resampling scheme in Condensation is sampling particles in
last time particle set according to their weight. The larger weight
the particle has, the more times the particle will be chosen to gen-
erate the next time particles. But that some particles have large
weight is illusive in clutter scene and when occlusion occurs. These
‘‘large” weight particles are far from the high likelihood area.
ll rights reserved.
So they will abduct the particles distributed in the wrong area
piece by piece.

An improved strategy to overcome these problems is to design
better proposal distributions. An auxiliary particle filter (APF) is
one such example provided by Pitt and Shephard (1999), which
generates particles from an importance distribution depending
on a more recent observation. Its weakness is that it requires a
large number of particles. When the state transition density is
quite scattered and the likelihood varies significantly over the state
transition distribution, APF is not always effective.

Another enhanced tactic for PF has been extensively studied
since the pioneering work of Comaniciu, Ramesh, and Meer
(2003), who were the first to introduce mean-shift analysis to vi-
sual tracking. Following their work, Maggio and Cavallaro (2005),
Shan, Wei, Tan, and Ojardias (2004) subtly extended mean shift
to the particle-filter framework. The central idea of their algo-
rithms is to redistribute particles to their local mode of the poster-
ior density by mean-shift analysis, thereby possibly using fewer
particles to keep multiple hypotheses. The particles in this algo-
rithm have lack of diversity. It performs ineffectively when occlu-
sion occurs. Different from the work of Maggio and Cavallaro
(2005), Shan et al. (2004), Chang and Ansari (2005) presented an-
other method which approximated posterior density using kernel
density estimate (KDE) and then estimated the gradient of poster-
ior density by mean-shift analysis. Mean shift plays different roles
in the above two kinds of methods in that it was used for maximiz-
ing the similarity function between the target candidate and the
target model by Maggio and Cavallaro (2005), which was used as
mode seeking of posterior density in Chang and Ansari (2005). De-
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spite successful particle redistribution, no immediate observations
are taken into consideration before sampling by Chang and Ansari
(2005).

In this paper, we present a new method to distribution particles.
The particles will simulate the posteriori density accurately only
when particles distribute in the likelihood area. Our work is as fol-
lows, firstly, we utilize some particles to search the distribution
area based on Particle Swarm Optimization (PSO) by Kennedy
and Eberhart (2001). Thus, we do not need to know the motion
model of the object. Secondly, we distribute particles in this area
based on two base points to simulate the posteriori density. The
search space in PSO is a little area around the object position. Be-
cause the position of the object in the continuous frames is so
close. The particles are used to search avoid the illusive weight.
This distribution method can combine diversity and convergence.
We called our algorithm PSO-PF. The framework of our algorithm
is shown in Fig. 1.

The remainder of the paper is organized as follows. In Section 2,
particle-filter algorithm is first reviewed. Our algorithm is outlined
in Section 3. The observation model of the object is presented in
Section 4. In Section 5, we illustrate some experimental results. Fi-
nally, we conclude the paper and point out future work.

2. Particle filter

Generic Bayesian filtering is used to estimate the state of a non-
linear dynamic system sequentially in time. However, some diffi-
culties exist, namely, intractable integrations in estimating the
posterior density. To solve these difficulties, probability densities
in Bayesian filtering are represented by means of point-mass, this
technique is called particle filtering. A continuous state vector of a
target object at time step t is denoted by xt 2 RNx with its history
X1. . .t = {x1, . . . ,xt}, and a measurement vector is zt 2 RNx with its his-
tory Z1. . .t = {z1, . . . ,zt}. The target dynamics is assumed to be repre-
sented as a temporal Markov chain:

pðxtjx1:t�1Þ ¼ pðxt jxt�1Þ ð1Þ

pðZ1...t jX1...tÞ ¼
Yt

i¼1

pðzijxiÞ ð2Þ

According to the Bayes rule, the posterior density is then given
by

pðxtjz1:tÞ ¼ ktpðztjxtÞpðxtjz1:t�1Þ ð3Þ

where kt is the normalization term and

pðxtjz1:t�1Þ ¼
Z

pðxt jxt�1Þpðxt�1jz1:t�1Þ ð4Þ
Fig. 1. The framework
is the prediction density as the prior. This recursion seems sim-
ple, but the computation should include intractable integrations.
In particle filtering, by using a set of samples and the correspond-
ing weights at time step t, the posterior is approximated as

ðxðnÞt ;wðnÞt Þ; n ¼ 1; . . . ;N
n o

pðxt jz1:tÞ �
XN

n¼1

wðnÞt d xt � xðnÞt

� �
ð5Þ

where d xt � xðnÞt

� �
is Dirac’s delta function. Then, the prior is

approximated as

pðxt jz1:t�1Þ �
XN

n¼1

wðnÞt p xt jxðnÞt�1

� �
ð6Þ

The weight wðnÞt�n is determined such that wðnÞt�n / p zt�1jxðnÞt�1

� �
:PN

n¼1wðnÞt�n ¼ 1.
If large number of particles can be used to sample, the posteriori

density would be accurate. But it is unpractical in real-time track-
ing. So, the limited particles been sampled in accurate area is
important in vision tracking.

3. Particle Swarm Optimization resampling

3.1. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a population based sto-
chastic optimization technique developed by Dr. Eberhart and Dr.
Kennedy in 1995, inspired by social behavior of bird flocking or fish
schooling.

PSO learned from the scenario and used it to solve the optimi-
zation problems. In PSO, each single solution is a ‘‘bird” in the
search space. We call it ‘‘particle”. All of the particles have fitness
values which are evaluated by the fitness function to be optimized,
and have velocities which direct the flying of the particles. The par-
ticles fly through the problem space by following the current opti-
mum particles.

PSO is initialized with a group of random particles (solutions)
and then searches for optima by updating generations. In every
iteration, each particle is updated by following two ‘‘best” values.
The first one is the best solution (fitness) it has achieved so far,
and the fitness value is also stored, this value is called pbest.
Another ‘‘best” value that is tracked by the particle swarm opti-
mizer is the best value, obtained so far by any particle in the pop-
ulation. This best value is a global best called gbest. When a particle
takes part of the population as its topological neighbors, the best
value is a local best called lbest.

After finding the two best values, the particle updates its veloc-
ity and positions with following equation (a) and (b).
of our algorithm.



For each particle  

    Initialize particle 

END

Do

    For each particle  

        Calculate fitness value 

        If the fitness value is better than the best fitness value (pBest) in history 

            set current value as the new pBest 

    End 

    Choose the particle with the best fitness value of all the particles as the gBest 

    For each particle  

        Calculate particle velocity according equation (a) 

        Update particle position according equation (b) 

    End  

While maximum iterations or minimum error criteria is not attained 

Fig. 2. The pseudo code of PSO algorithm.
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V ½� ¼ V ½� þ C1 � randðÞ � ðpbest½� � present½�Þ þ C2 � randðÞ
� ðgbest½� � present½�Þ ðaÞ

present½� ¼ present½� þ v ½� ðbÞ

V[] is the particle velocity, present[] is the current particle (solu-
tion). pbest [] and gbest [] are defined as stated before. rand () is a
random number between (0,1). C1, C2 are learning factors. Usually
C1 = C2 = 2.

The pseudo code of the procedure is as shown in Fig. 2.

3.2. PSO resampling

Firstly, we need to find the sample area at time step t depending
on current observation. In the usual vision, object center position
at t is around the one at t � 1. But we do not know the object mo-
tion model sometimes, we cannot know the object position yet. In
SIR, sampling at time step t is depending on these large weight par-
ticles at time step t � 1. Some large weight particles is illusive. SIR
allures particles sampling in the wrong area especially in the clut-
ter scene. We search the right sample area first of all.

We randomly sample 10 particles from the object center posi-
tion at time step t � 1. These particles are used to search likelihood
area. The fitness of the particle is the similar measure between the
candidate model and the target model. We set maximum iterations
is five times. Because PSO is an iteration algorithm in search space,
it will cost much time. But PSO in our algorithm does not need iter-
ate so many times. The first reason is that searching space is a
small area around the object position at times step t � 1 and ini-
tialized particles are also around the object position. The second
reason is that we do not need to find the idiographic position
where the object is at next time. We only need to find the right
sample area to help particle filter perform well. The experiments
demonstrate that five times is appropriate.

When the iteration ends, the gBest and pBest are calculated. At
this step, we distribute particles according to gBest and pBest. In
order to improve the diversity, we distribute a subset of particles
from gBest. The remainder of particles are distributed from pBest.
Fig. 3. HOG extraction. (a) Mask for pixel gradient calculation, (b) Orientation bin
4. Observation model

In order to improve the robustness of the algorithm we present,
we combine the color histogram (HC) and histogram of orienta-
tions gradient (HOGC), called HOGC as our observation model.
The color histogram is unaware to rotation while the gradient
one is unaware to color. It considers the color representation and
contour representation of an object respectively.

We define a color histogram (HC) of 48 dimensions for both the
object and its background. In each color component (R, G and B in
RGB color space), 16 dimensions of histogram features are ex-
tracted. Color Histogram is described in some paper by Comaniciu
et al. (2003).

We extract HOG features on gray value image windows. On
each window, a histogram of 72 dimensions is extracted to descript
the gradient orientation of an object. HOG feature is the evolve-
ment of edge orientation histograms by Geronimc, Lopez, Ponsa,
and Sappa (2007) and SIFT descriptors by Lowe (2004). Fig. 3
indicates the HOG extraction, and steps are as follows:

1. resizing the object rectangle region into an image window of
fixed size, 32 � 32.

2. divide the image window into small spatial regions (cell) with
the size of 8 � 8, a 2 � 2 group of cells is a sliding widow (9
windows).

3. the orientation is 8-bin.
4. calculate the orientation ori(h,w) of each pixel in the sliding

window according to Eq. (7).
for votin
I ¼ Gðr;0Þ � I0

dy ¼ Iðhþ 1;wÞ � Iðh� 1;wÞ
dx ¼ Iðh;wþ 1Þ � Iðh;w� 1Þ
oriðh;wÞ ¼ atan2ðdy; dxÞ ori 2 ½�p;p�

ð7Þ
Then we calculate the histogram obtained 72(8 � 9) dimensions.
To make the HOG features handle objection rotation, we use the

method in SIFT by Lowe (2004). An orientation histogram is formed
from the gradient orientations within a region around the center of
the image window. That is to say, the center point of the image
window is a SIFT keypoint. The orientation histogram has 18 bins
covering the 360� range of orientations in our proposed approach.
Peaks in the orientation histogram correspond to dominant direc-
tions of local gradients. The highest peak in the histogram is de-
tected, and then we rotate the image window to the model we
initialed at the beginning of the tracking process. Therefore, the
HOG of the image window is independent to the orientation here.

The Bhattacharyya distance is used to measure the similarity
distance between the object model and candidate model.

5. Experiments

In this section, Particle Filter based on PSO is tested on public
tests to compare performance with the traditional Particle Filter
on robustness and accuracy.

In our experiments, the sate of the particles is the object posi-
tion. The measure is the HOGC feature. The transition equation is
g, (c) An image window partitioned into 9 blocks with the same size.
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xkþ1 ¼ f ðk; xkÞ þwk ð8Þ
where wk is zero mean Gaussian noise. We do not use the motion
equation f(k,xk). In real life situations, especially with variational
motion and interacting with other objects of the scene, it is very
difficult to know the object dynamics beforehand. Different object
will have different dynamics. In our algorithm, we do not need to
know the motion model. PSO is used to searching new sample
area.

We compare robustness between PF and PSO-PF in Figs. 4–6.
We compare accuracy in Fig. 7. We calculate the error on X axes
and Y axes according the equation
Fig. 4. (a) PSO-PF tracki

Fig. 5. (a) PSO-PF tracki

Fig. 6. (a) PSO-PF tracki
Error on X ¼ jXt � x� bXt � xj
W

ð9Þ

Error on Y ¼ jXt � y� bXt � yj
H

ð10Þ

Fig. 4 shows the result of tracking a white car interacted by
other cars. Fig. 4(a) shows that PSO-PF algorithm performs well.
Firstly HOGC feature describes the object from the color and con-
figuration. Although HOGC feature is discriminative, the tracking
may fail because of the illusive large weight particles. PSO can
search the sample center around the object center depending on
current observation. Because the next object position must be
around the upper time object position. PSO-PF can always track
ng. (b) PF tracking.

ng. (b) PF tracking.

ng. (b) PF tracking.



Fig. 7. PSO-PF tracking.

Fig. 8. The tracking error of PF and PSO-PF on Fig. 7.
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the object especially when the car interact with the other three
cars. In Fig. 4(b), when the tracked car encounters the first white
car, the particles distribute dispersedly. The PF tracking failed.

Fig. 5 shows the result of tracking a car occluded by trees. Track-
ing an occluded object is difficult, because the observation is wrong
when occlusion occurs. The particle Filter is a prediction model. So
it can predict the object position when brief occlusion occurs. When
the right observation cannot be obtained, SIR leads the particle dis-
tribution dispersedly. The PSO has searched the sample area around
the object position (It may be not accurate at this time, but the
approximate orientation is right). We utilize the two sample base
points. The diversity and the convergence are all maintained.
Fig. 5(a) shows the result of PSO-PF tracking. It can successfully
track the car after came out from the tree. In Fig. 5(b), PF tracking
is failed when occlusion occurs.

Fig. 6 shows the result of object tracking with illumination, con-
figuration change and weak dynamic model. In the beginning, we
only see the front and top of the car. Then illumination changes
when the car veers. Afterwards we can see the top and the back
of the car. We do not know the motion model yet. Fig. 6(a) is the
result of the PSO-PF tracking, It performs well. Fig. 6(b) is the result
of the PF tracking. The tracking fails. As the weight of some parti-
cles is illusive, it abducts the particles to form the wrong distribu-
tion in SIR. So the particles in PF cannot be convergence.

Fig. 7 shows the result of a tank tracked in the grassland. The
performance is well by both PSO-PF tracking and PF tracking.
The difference between two methods is accuracy. From the
Fig. 8, we know that the accuracy in PSO-PF tracking is higher than
the PF tracking both on X axes and Y axes.

6. Conclusion and future works

In this paper, we present an efficient resampling method based
on Particle Swarm Optimization. The experiments demonstrate
that our algorithm performs well in some complex scene. In the
future, we need to enhance the efficiency PSO algorithm in PF.
How to guide the particles to distribute reasonably when occlusion
occurs is our next research.
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