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A number of studies have reported the phenomenon of “Software aging”, caused by resource exhaustion and
characterized by progressive software performance degradation. In this article, we carry out an experimental
study of software aging and rejuvenation for an on-line bookstore application, following the standard con-
figuration of TPC-W benchmark. While real website is used for the bookstore, the clients are emulated. In
order to reduce the time to application failures caused by memory leaks, we use the accelerated life testing
(ALT) approach. We then select the Weibull time to failure distribution at normal level, to be used in a
semi-Markov process, to compute the optimal software rejuvenation trigger interval. Since the validation of
optimal rejuvenation trigger interval with emulated browsers will take an inordinate long time, we develop
a simulation model to validate the ALT experimental results, and also estimate the steady-state availability
to cross-validate the results of the semi-Markov availability model.
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1. INTRODUCTION

Studies show that operational software failures are transient in nature, caused by
phenomena such as overloads or timing and exception errors [Grottke et al. 2006].
Grottke et al. [2006] classified software faults into three types according to poten-
tial manifestation characteristics: Bohrbugs, Mandelbugs, and aging-related bugs, and
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then analyzed the faults discovered in the on-board software for 18 JPL/NASA space
missions based on this classification method [Grottke et al. 2010]. Aging-related bugs
cause an increasing failure rate, gradual software performance degradation, and may
eventually lead to a system hang or crash. Software aging is mainly caused by the
successive accumulation of the effects of aging-related fault activations [Matias et al.
2010c]. It leads to the exhaustion of system resources, mainly due to memory leaks,
unreleased locks, nonterminated threads, shared-memory pool latching, storage frag-
mentation, or similar causes [Huang et al. 1995; Garg et al. 1998b; Grottke et al. 2008].
This undesired phenomenon exists not only in ordinary server applications, but also
in critical applications that require high dependability levels. Software aging could
cause great losses in safety-critical systems [Jia et al. 2008], including the loss of hu-
man lives [Marshall 1992]. To counteract software aging, researchers have proposed
a proactive approach called software rejuvenation (SR) [Huang et al. 1995; Castelli
et al. 2001]. Rejuvenation has been implemented in various computing systems, such
as billing data collection systems, telecommunication systems, transaction processing
systems, and spacecraft systems [Castelli et al. 2001; Cassidy et al. 2002; Zhang and
Pham 2002; Cai 2006]. It involves occasionally terminating an application process or
the operating system, cleaning its internal state and restarting it in order to release
system resources, so that the software performance is recovered. One or more indica-
tors of aging can capture the aging behavior [Huang et al. 1995; Grottke et al. 2006;
Matias et al. 2010c]. Such indicators are measurable metrics of the target system likely
to be influenced by software aging.

The most popular web server on the Internet, the Apache web server [Apache 2011a],
is known to suffer from software aging [Grottke et al. 2006]. It has been in general
demonstrated that the extent of software aging depends on the workload imposed on
the system [Vaidyanathan and Trivedi 2005; Bao et al. 2005; Grottke et al. 2006]. For
examples, see Grottke et al. [2006] for Apache web server and see Silva et al. [2006] and
Alonso et al. [2007] for Axis. Most of the previous experimental research on software
aging and rejuvenation employed Apache web server as a test bed, and then used
statistical methods to predict the time to resource exhaustion [Grottke et al. 2006;
Alonso et al. 2007]. With the exception of Vaidyanathan and Trivedi [2005], Bobbio
et al. [2001], and Dohi et al. [2000] on optimal rejuvenation scheduling, most other
analytic models used for capturing software rejuvenation are based on the assumption
that the distribution of time to failure due to software aging is known, and the aim is
to determine the optimal times to trigger rejuvenation in order to maximize system
availability or related measures [Huang et al. 1995; Garg et al. 1998a; Silva et al. 2006].
Whatever approach is used for rejuvenation scheduling, such as measurement based,
analytic, or both, estimated time to failure should be obtained more efficiently. Due to
the difficulty in experimentally studying aging-related system failures by observation
of failure times, Matias et al. [2010a] developed a systematic approach to accelerate the
aging effects at the experimental level. They introduced the concept of aging factors
and used different levels of accelerated workload to increase the system degradation.
Based on the degradation data of selected system characteristics, captured through
measurements, they apply the statistical technique of accelerated degradation tests
(ADT) to estimate the time to failure in normal condition (without acceleration). In
Matias et al. [2010c], the authors do not use degradation data, but directly observe
failures obtained also under accelerated workloads. In this case, they use another
technique called accelerated life tests (ALT) to estimate the time to failure in normal
condition. In both studies the system under test was based on the Apache web server.

Memory leaks are recognized to be one of the major causes of resource exhaustion
problems in complex software, which represent one of the most serious causes of aging.
Macêdo et al. [2010], focussed on two types of memory problems (fragmentation and
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Fig. 1. Cross validation among ALT, simulation, and SMP model.

leakage) that cause software aging, presenting an experimental study on the cumu-
lative effect of these problems in software systems [Macêdo et al. 2010; Matias et al.
2010b]. Alonso et al. [2010] injected memory leaks to intensify memory consumption
to derive the nonlinear memory resource behavior, and then used machine-learning
algorithms to predict whether software aging has reached a given threshold.

Motivated by the ALT method discussed in Matias et al. [2010c], we inject mem-
ory leaks to intensify memory consumption so as to accelerate application failures.
We thus assume that the primary cause of aging in our system is memory leak and
hence we neglect any other potential causes of aging (e.g., memory fragmentation). In
the actual environment, memory consumption rate is affected by workload imposed on
the system, but it is reasonable to consider and employ the long-term average memory
consumption rate for the injection in our experiments. In our experiments, we inject
memory leaks in the test bed by explicitly appending objects that cannot be recycled by
the garbage collector, in order to obtain the average memory consumption rate. Exper-
imental results are then used to derive the estimate the parameters of time to failure
(TTF) distribution at different acceleration levels as well as in the normal use condi-
tion. These estimates are then used in determining an optimal rejuvenation schedule
via a semi-Markov process (SMP) [Zhao et al. 2011].

In this article, we extend the results of our previous paper [Zhao et al. 2011], to
further develop a detailed simulation model of the ALT experiment. The need for the
simulation model arose from the fact that even with ALT, the measurement exper-
iments on a real browser take an inordinate amount of time when rejuvenation is
introduced in the test bed. By contrast, simulation is still possible to complete in a
reasonable time even when rejuvenation is introduced. We sketch our idea in Figure 1.
In the first phase of cross validation between ALT and simulation, we obtain the TTF
results at different accelerated levels from the simulation model and thence we obtain
the non-accelerated TTFs. We then cross-validate the results of the simulation with
measurements on the real browser. In the second phase, we cross validate the availabil-
ity results estimated from the simulation model with rejuvenation and semi-Markov
availability model. We then go on to use the analytic semi-Markov model to determine
the optimal rejuvenation trigger interval. We note that simulation includes individ-
ual client request generation and processing, besides memory leak injection, ALT and
rejuvenation.

The main contributions of this article are as follows. First, we combine experimen-
tation, statistical analysis using ALT, probabilistic (semi-Markov) models, discrete-
event simulation and optimization in a single effort. Second, we cross-validate the
ALT experimental results from a real browser against detailed simulation, and also
the semi-Markov availability model with the detailed simulation model. The validated
semi-Markov model is then used to determine the optimal rejuvenation trigger interval.

The rest of this article is organized as follows. In Section 2, we show how to use ALT
in systems suffering from software aging. In Section 3, the experimental setup and
data collection are explained, where we describe how memory leak is injected to derive
the system TTF samples at different acceleration levels. In Section 4, we discuss how
to use an IPL acceleration model to estimate the mean time to failure for the system
running at (normal) use level. In Section 5, we explain the use of the Weibull time
to failure distribution along with a semi-Markov process model in order to optimize
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the software rejuvenation trigger interval with the system availability and operational
cost as objective functions. In Section 6, we develop a detailed simulation model to
cross validate the ALT experiment and the semi-Markov availability model. Finally,
we present our conclusions in Section 7.

2. ALT METHOD FOR SOFTWARE AGING

Accelerated life tests method (ALT) is successfully applied in many engineering fields
[Nelson 2004] to significantly reduce the experimentation time, which is designed to
quantify the life characteristics (e.g., mean time to failure) of a system under test (SUT).
By applying controlled stresses to reduce the SUT’s lifetime, the SUT is tested in an
accelerated mode, and results are then adjusted to its normal operational condition.
Thus, ALT uses the lifetime data obtained under accelerated stresses to estimate the
lifetime distribution of the SUT for its normal condition. This systematic approach can
be divided into four main steps: (1) selection of accelerating stress, (2) ALT planning
and execution, (3) definition of the life-stress aging relationship, and (4) estimation of
underlying life distribution (probability density function, pdf) for the normal condition.
The following sections will discuss each step in detail.

2.1. Selection of Accelerating Stress

A fundamental element during test planning is the definition of accelerating stress
variable and its levels. Typical engineering accelerating stresses are temperature,
vibration, humidity, voltage, and thermal cycling [Nelson 2004]. However, software
reliability engineering does not have standards related to software accelerating stresses
for ALT. Given the nature of aging related faults, we can determine suitable accelerating
stresses based on experiments. Based on Matias et al. [2010a], we employ memory
consumption rate as the stress factor in order to accelerate the memory consumption
rate. We also adopt a constant stress loading scheme [Nelson 2004] in this article.

2.2. ALT Planning and Execution

After selecting the acceleration factor, we can plan the ALT. This activity includes
the following elements: number of stress levels, the amount of stress applied at each
level, the allocation proportion in each level, and the sample size. In our approach to
apply ALT for software components, the sample size is the number of test replications.
According to the theory, the ALT test plans can be classified as: traditional, optimal,
and compromise plans [Nelson 2004]. The traditional plans usually consist of three or
four stress levels, with the same number of replications allocated at each level. The
optimal plans specify only two levels of stress, high and low. The compromise plans
usually work with three or four stress levels, and use an unequal allocation proportion.
A more detailed description of the three plans can be found in Nelson [2004]. In our
approach, the traditional plan with four levels is used.

2.3. Life-Stress Aging Relationship

Once the SUT is tested at the selected stress levels, the estimate of the mean time to
failure (MTTF) at normal condition is to be obtained from the TTF samples obtained at
different stress levels. Therefore, we need to build the relationship between life-stress
at accelerated and normal levels. As an example, consider the life-stress model that is
known as the Inverse Power Law (IPL) [Nelson 2004]:

L(s) = 1
k · sw

, (1)

where L represents a SUT life characteristic (e.g., mean time to failure), s is the stress
level, k(k > 0) and w are model parameters to be determined from the observed failure
time samples.
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Fig. 2. Experimental environment.

2.4. Lifetime Distribution Estimation

Assuming that the TTF sample is exponentially distributed, IPL yields the pdf of TTF
as:

f (t, s) = kswe−kswt (2)

Maximum-likelihood estimation (ML) method can be applied to estimate the model
parameters (k, w), and then use them to estimate the MTTF, that is, L(s), for the SUT
under normal stress level.

3. EXPERIMENTAL SETUP

We adopt ALT to experimentally study application failure affected by software aging.
Based on failure time samples collected under different stress loadings, the estimate
of the time to failure distributions at different acceleration levels as well as at normal
condition are obtained.

3.1. Test Bed

To study the aging effects of application failures caused by memory leaks, we execute
experiments that reproduce a typical web application. Our test bed is composed of a web
server, a database server, and a set of clients. The database and web servers are on the
same physical machine while all the clients occupy another physical machine. We have
used a multi-tier e-commerce web site that simulates an on-line bookstore [Bezenek
et al. 2011]. The workload is based on the configuration of TPC-W benchmark [TPC
2002]. This environment also includes Java servlets, MySQL as the database server,
and Apache Tomcat as the application server [Apache 2011b]. TPC-W allows us to run
different experiments using different parameters and under a controlled environment.
TPC-W clients, the so-called Emulated Browsers (EBs), access the web site in sessions.
A session is a sequence of logically connected requests (from the EB point of view).
Between two consecutive requests from the same EB, TPC-W undergoes a “thinking
phase”, representing the time between the users receiving the web page requested and
generating the next request. TPC-W has three kinds of workload (Browsing, Shopping,
and Ordering) [TPC 2002]. We conduct our experiments using Shopping transactions
only. Figure 2 presents the experimental environment used in this article.

3.2. Injecting Memory Leaks

To emulate the aging effects consuming resources until the application failure, we have
modified the TPC-W implementation by changing the TPCW search request servlet to
inject memory leaks. The servlet class relationship including TPCW search request -
servlet is shown in Figure 3. Furthermore, we add a piece of code to the servlet so as
to modify the doGet() method inside TPCW search request servlet.

The doGet() modification is illustrated in Figure 4. A random number from 0 to N is
generated, where N is specified in a configuration file. The randomNumber value deter-
mines how many requests can use the servlet before the next memory leak is injected.
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Fig. 3. Java servlet class.

Fig. 4. Modification of doGet().

This number is decreased by one on each invocation of doGet(), that is, on every visit of
the Search Request Page. When this number is reduced to zero, a new data is appended
to the BigObjList and in the same time a new randomNumber is generated. Thus,
the time between memory leaks depends on the frequency of the servlet invocations.
According to the TPC-W specification, this frequency depends on the chosen workload.
In our experiment, we select the workload to be 100 EBs. Hence, under high workload
our servlet injects memory leaks quickly. On the other hand, under low workloads
the leak rate is lower. But, in the long term, the average leak rate would depend on
the average value of the random variable randomNumber, with fluctuations that be-
come less relevant when averaged over time. Therefore, since the memory consumption
rate would depend on the value of N, we can simulate this effect by varying N.

The Java heap memory is divided into three main zones: Young, Old, and Permanent.
A Java object is created in one of these heap zones and is garbage-collected after there
are no references to it. Resource behavior can look quite different depending on the
adopted monitoring strategy. Memory usage by a Java application looks different if we
monitor it from the operating system (OS) level or from inside the JVM. From the OS
level, when a Java application frees up memory objects, it is not possible to perceive
the changing trend for the memory used. However, if we observe it from inside the
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Fig. 5. JVM memory exhaustion.

JVM, then we can obtain accurate measures. It can be justified because the JVM starts
reserving a maximum amount of memory to be used by dynamic memory allocations,
and JVM takes care of it without involving the OS. This strategy prevents the OS to
be aware of the allocations and deallocations occurring inside the JVM. Therefore, in
our experiment, we measure memory consumption inside the JVM, and collect data on
the Young and Old heaps [Oracle 2010].

We use a JVM monitoring tool, jmap [Oracle 2010], to collect the JVM memory
exhaustion data. A script written in perl on the server invokes jmap periodically, and
then obtains the memory usages of Young, Old and Permanent. We collect Young plus
Old used memory space at an interval of ten seconds. The Young plus Old memory used
space as well as capacity when N equals 7, is shown in Figure 5(a), and Old memory free
is shown in Figure 5(c). In addition, Java’s Runtime class provides a lot of information
about the resource details of Java Virtual Machine. Java’s Runtime API is invoked
when TPCW search request servlet is injected, so that we collect runtime memory
used by JVM from the servlet perspective. This can further account for the memory
exhaustion at each injection point. Runtime memory used is shown in Figure 5(b). In
Figure 5(a), it can be seen that the Young plus Old memory of JVM is used up, since it
is close to both heaps’ maximal capacity, while in Figure 5(b) we see that the runtime
memory used is close to the JVM capacity. The Young plus Old capacity is shown in
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Table I. Memory Consumption Rate and N

Memory
consumption
rate (kB/s) N Memory consumption rate per replication

0.0124 normal level

149.61 4
146.86, 149.22, 149.54, 157.04, 136.2,
153.44, 154.94

82.518 8
64.892, 84.042, 90.645, 88.752, 82.509,
85.847, 80.943

58.132 12
55.331, 58.284, 56.496, 59.213, 56.084,
55.148, 66.368

47.321 16
43.256, 48.649, 46.918, 50.081, 48.227,
44.348, 49.768

Figure 5(a), and from Figure 5(c) we see that the Old memory free is close to zero. From
these figures, we can see the memory exhaustion of JVM due to memory leaks from
different perspectives and see that different views are consistent.

4. ANALYSIS OF EXPERIMENTAL RESULTS

In our experiment, we use four acceleration levels (S1 to S4) with N equals 4, 8, 12,
and 16, for each level, respectively. We run 7 replications at each acceleration level,
thus 28 samples are obtained in total. Also, we use the algorithm described in Matias
et al. [2010a] to calculate the sample size, nALT , thus verifying whether the initial
number of samples satisfies the criteria of statistical analysis used in the ALT method.

Based on the experimental results, we calculate the mean memory consumption
rate from runtime memory used, at each acceleration level. For each replication, the
memory consumption rate is calculated using the Sen’s slope estimate method [Sen
1968]. These results are shown in Table I. Next, we conduct the experiment removing
acceleration factors so as to calculate the memory consumption rate at normal level.
We observe that when the workload is equal to 100 EBs, the total experimental time is
398790 seconds, or 4.615625 days. The memory consumption rate of Young and
Old heaps is approximately 0.0124kB/s, based on the Sen’s slope estimation method
(see Figure 6).

We may use two approaches to calculate the TTFs. The Young plus Old memory free
space which is obtained from the same data set in Figure 5(a), is shown in Figure 7.
The developed algorithm calculate the TTFs by using the Young plus Old memory free
shown in Figure 7. It searches the TTF point from the last sample, and ends when the
difference between the last sample and the current sample reaches the threshold which
is a fixed value, so that the TTF point can be found. But, from Figure 7, it can be seen
that when the Young plus Old memory is exhausted, the JVM usage may fluctuate
irregularly due to complex generation memory management and garbage collection
(GC) behavior, so that it is not easy to define the exact TTF point. Hence, using this
approach of calculating TTF samples may lead to inaccuracy of locating the TTF point.

Then we use the runtime memory usage data in Figure 8 to calculate the TTFs. The
memory usage data from the first injection point to the last successful injection point
in Figure 8 is from the same data set in Figure 5(b). It can be seen in Figure 8 when
the last injection behavior occurs, the free memory is nearly exhausted. But it can
be observed that the server can still provide the service such as the response to the
Home page, which requires only a small quantity of memory. Because of GC, a little
remaining memory can be used to serve quite a few normal requests. After this moment
when the memory injection behavior occurs again, this injection will fail, and it can
be observed that the server stops responding to EBs’ requests. This can be explained
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Fig. 6. Memory consumption rate of Young plus Old heaps calculated using Sen’s slope method.

Fig. 7. The algorithm to locate the TTF point of TTF.

that the server fails due to the insufficient memory. The previously mentioned interval
is the time between the last successful injection to the failed injection as shown in
Figure 8, and we define this point as the TTF point. As a result, the TTF is the total
time for the three phases as shown in Figure 8, in which the first phase is from the
beginning of the experiment to the first injection point, the second phase is the time
between the first injection point to the last successful injection point, and the third
phase is from the last successful injection point to the failed injection point.

Our experiment recorded detailed injection point time that has a millisecond pre-
cision as well as the random numbers between 0 to N when the injection behavior
occurs. Note that the number of visiting Search Request Page equals the corresponding
recorded random number. We made a statistics analysis of the time interval between
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Fig. 8. Three phases of TTF sample.

Table II. Sample of Failure Times (seconds)

TTF(S1) TTF(S2) TTF(S3) TTF(S4)
731.101 1322.731 1769.281 2071.165
737.962 1342.926 1770.842 2188.907
738.284 1360.289 1898.677 2202.236
755.586 1382.329 1994.836 2266.199
764.761 1394.484 2014.693 2443.743
766.159 1419.333 2018.450 2558.261
862.257 1476.640 2098.482 2609.083

visiting Search Request Page, Tinterval, and obtained the mean value of Tinterval that
equals 4.7489s, with its 90% CI (confidence interval) being (4.5460, 4.9518)s. If we use m
and n to represent the number of visiting Search Request Page of the first phase as well
as the third phase respectively, and the time durations of the second phase is Tsecond,
the total time for the three phases, TTF, can be calculated as (m+ n) · Tinterval + Tsecond.
The samples of time to failure at each acceleration level are shown in Table II. Each
TTF sample is the time from the beginning of a test to the time when the server’s
memory is exhausted.

The TTF is determined by the memory consumption rate, and the memory consump-
tion rate is affected by two main factors: one is the frequency of visiting Search Request
Page, and the other is the memory injection rate. The frequency of visiting Search Re-
quest Page depends on the TPC-W specification [TPC 2002], while the memory injection
rate is controlled by an integer N. For example, if N equals 4, there are randomNumber
visits of Search Request Page between two injection points, where randomNumber is a
random number between 0 to 4. Hence, the amount of change of the memory injection
rate is small at the same value of N, also, at each stress level, the memory injection is
the main cause of memory consumption, so the values of the memory consumption rate
have small changes among replications. Therefore, at each stress level, the variance of
TTF data is low.

The next step is to select the Lifetime distribution. The most used probability dis-
tributions in ALT experiments are from the location-scale family [Meeker and Escobar
1998]. Examples of distributions from this family are Normal, Weibull, Lognormal,
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Table III. Results of Model Fitting for Accelerated Failure Times

Accelerated level Model Lk Best-fit Ranking

4(S1)
Lognormal −35.7755 1st

Weibull −37.5017 2nd

Exponential −53.4806 3rd

8(S2)
Lognormal −36.9586 1st

Weibull −37.7957 2nd

Exponential −57.6369 3rd

12(S3)
Lognormal −43.5112 2nd

Weibull −43.1158 1st

Exponential −59.9855 3rd

16(S4)
Lognormal −46.6123 1st

Weibull −46.8550 2nd

Exponential −61.2881 3rd

Logistic, LogLogistic, and Extreme Value distributions. Location-scale distributions
have an important property in analyzing data from accelerated life tests, which is re-
lated to their cumulative distribution function (cdf). A random variable Y belongs to a
location-scale family of distributions if its cdf can be written as:

Pr(Y ≤ y) = F(y; μ, σ ) = �

(
y − μ

σ

)
, (3)

where −∞ < μ < ∞ is a location parameter, σ > 0 is a scale parameter, and � does not
depend on any unknown parameters. Appropriate substitution [Meeker and Escobar
1998] shows that � is the cdf of (Y −μ)/σ when μ = 0 and σ = 1. The importance of this
family of distributions for ALT is due to the assumption that the location parameter,
in (3), depends on the stress variable, s, that is μ(s), and the scale parameter, σ , is
independent of s. This relationship is shown in (4).

Y = log(t) = μ(s) + σε, (4)

where t is the time to failure, and ε is a probabilistic component modeling the time
to failure sample variability. Essentially, we have a location-scale regression model
to describe the effect that the explanatory variable, s, has on the time to failure. In
this work, we evaluate density functions from location-scale family of distributions,
and assume their scale parameter approximately constant (within the same CI) across
the stress levels. Based on Matias et al. [2010a], we test the probability distributions
Lognormal, Weibull and Exponential to identify the best fit. The criterion used to
determine the quality of fit is the log-likelihood function (Lk) [Trivedi 2002].

We calculate nALT to be 25 using the method given in Nelson [2004], which is the
minimum number of samples needed for our ALT test plan. Since this number is
smaller than the one we used in our experiments, we satisfy the ALT assumptions for
the sample size.

The fitting results for Lognormal, Weibull, and Exponential are shown in Table III.
We can see from Table III that both Weibull and Lognormal fitting results are very

close. Equations for the SMP model in Section 5 have been worked out for the Weibull
case, but not yet for the Lognormal. And since Weibull fitting is nearly as good as
Lognormal fitting, we chose Weibull combined with IPL model to create our life-stress
relationship. The probability density function (pdf) of Weibull is shown in Eq. (5)

f (t) = β

η

(
t
η

)β−1

e−( t
η

)β
, (5)

where, f (t)≥0, t≥0, β ≥0, η≥0, η= scale parameter, β = shape parameter (or slope).
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Table IV. Parameter Estimation of Weibull Model

Accelerated
Parameter

ML 90% CI
level estimate Lower Upper

S1
η1 787.015 753.944 821.536
β1 15.464 10.071 23.743

S2
η2 1409.691 1376.925 1443.237
β2 28.116 17.881 44.209

S3
η3 1992.147 1928.448 2057.949
β3 20.146 12.138 33.436

S4
η4 2423.091 2308.777 2543.065
β4 13.631 8.368 22.202

Table V. IPL-Weibull Parameter

Parameter
ML 90% CI

Estimate Lower Upper
β 17.3682 13.7767 21.8959
k 9E-6 8E-6 1.1E-5
w 0.9796 0.9397 1.0195

In ALT, the life-stress relationship is usually based on traditional models such as
Arrhenius, Eyiring, Inverse Power, Coffin Manson, etc. [Nelson 2004], which are ap-
propriate to physical or chemical phenomena. However, due to the lack of equivalent
models established for software experiments, Matias et al. [2010a] investigated several
models and recommended the Inverse Power Law (IPL) for software aging experiments.
IPL is a general model applicable to any type of positive stress scenario such as the
one we have in our experiment.

The IPL-Weibull model can be derived by setting η = L(s), yielding the following
IPL-Weibull pdf:

f (t, s) = βksw(kswt)β−1e−(kswt)β (6)

This is a three-parameter model. Thus, (7) can be directly derived from (6) and used
to estimate the mean time to failure, MTTF, of the SUT at a specific use rate.

MTTF(s) = 1
ksw

· �

(
1
β

+ 1
)

(7)

where, � is the Gamma function [Trivedi 2002].
According to Meeker and Escobar [1998], the Weibull distribution may adopt the

same parametrization structure shown in (3), where σ = 1/β is the scale parameter, and
μ = log(η) is the location parameter. Hence, the assumption of same scale parameter
across the stress levels must be evaluated on the estimated values of β after fitting the
Weibull model to the four samples of failure times. We verified that the four beta values
are inside the CI calculated for each sample, and their intervals satisfy the assumption
of scale invariance. Table IV presents the estimates for Weibull parameters, obtained
through the maximum likelihood (ML) parameter estimation method [Nelson 2004].

The estimated IPL-Weibull parameters are listed in Table V. We use Eq. (7) to
estimate the MTTF and pdf for the normal condition. Figure 9(a) presents the fit of
the Weibull model estimated from the four stress levels, and for the normal condition.
Figure 9(b) shows the failure and stress relationships. The calculated estimate for time
to failure (x-axis) at the normal level starts at 0.0124. We obtain the MTTF at normal
level of 7.6115E+6 seconds, or 126858 minutes, with its 90% CI being (5.3730E+6,
1.0782E+7) seconds, that is, (89550, 179700) minutes.
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Fig. 9. IPL-Weibull model estimation.

Fig. 10. Goodness of fit of the estimated IPL-Weibull model.

Fig. 11. Rejuvenation model.

Figure 10(a) presents the probability plot for the normal condition level, and the
standardized residuals plot is shown in Figure 10(b), which confirms the good fit of the
estimated model.

From the analyses of these results, we can see the experimental costs to obtain
TTFs and the related metrics (e.g., MTTF, pdf, etc.) are greatly reduced due to the ALT
approach. In addition, the estimates of the time to failure distributions at different
acceleration levels as well as normal condition are obtained. These results can be used
to further schedule software rejuvenation, and thus improve the software availability,
and reduce the maintenance costs.

5. OPTIMAL SOFTWARE REJUVENATION

Based on the results discussed in Section 4, we employ the preventive maintenance
model presented in Chen and Trivedi [2001], using the Weibull time to failure distri-
bution. We optimize the software rejuvenation trigger interval in order to maximize
the system availability or minimize the operational cost. Figure 11 shows this model.
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Fig. 12. Steady-state availability vs. time to rejuvenation t0.

It consists of three states: UP state, or state 0, in which the system is up; RJ state, or
state 1, in which the system is undergoing software rejuvenation, and DOWN state,
or state 2, in which the system is down and under reactive repair. State 0 is the only
available state. From state 0, the system will enter state 1 with a general distribution
function, F0(t), for the software rejuvenation trigger interval, or fail and enters into
state 2 with a general time to failure distribution F2(t). The distribution function for
the duration of software rejuvenation (proactive repair) is F1(t), and the distribution
function for the duration of reactive repair is F3(t). This model is a semi-Markov process
[Trivedi 2002].

We assume that the rejuvenation trigger interval is deterministic (t0) and the mean
time to carry out the rejuvenation and reactive repair are t1 and t2, respectively.

The CDF (Cumulative distribution function) of the time to failure distribution is
assumed to be Weibull and given by:

F2(t) = 1 − e−( t
η

)β
. (8)

The sojourn time in UP state is then given by:

h0 =
∫ t0

0
(1 − F2(t)) dt = η

β
�

(
1
β

)
G

(
1
ηβ

tβ

0 ,
1
β

)
, (9)

where G(x, β) = 1
�(β)

∫ x
0 e−uuβ−1 du is the incomplete gamma function. Hence, we can

get the steady state availability:

Aweib = h0

h0 + (1 − F2(t0))t1 + F2(t0)t2
. (10)

Therefore, from (10), we derive the steady state availability A = Aweib(η, β) is com-
puted using the point estimates of the Weibull parameters from the experiments.
Similarly, the CI Alow = Aweib(ηlow, βlow), Ahigh = Aweib(ηhigh, βhigh) is computed from the
experimental CIs of Weibull parameters. We assume that the mean duration for car-
rying out software rejuvenation, t1, is 1 minute, and the mean time for reactive repair,
t2, is 5 minutes. Steady-state availability vs time to rejuvenation trigger, t0, assuming
the Weibull time to failure distribution is shown in Figure 12. The optimal time to
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Fig. 13. Average cost vs time to rejuvenation t0.

trigger rejuvenation and the corresponding availability are marked in this figure. In
this case, the optimal choice of rejuvenation trigger interval could accrue availability
improvement.

Another objective is to minimize the expected cost. A cost of C f per minute is incurred
when the system is down due to system failure, and a cost of C ′

f is incurred for each
reactive repair carried out; a cost of Cp per minute is incurred when the system is
down for carrying out software rejuvenation, and a cost of C ′

p is incurred for each
rejuvenation action carried out. The total expected cost per minute is thus

C = C f π2 + C ′
f π2/t2 + Cpπ1 + C ′

pπ1/t1, (11)

where π2/t2 and π1/t1 are the average number of reactive repairs and rejuvenation
executions per minute, respectively.

We assume that Cp = C ′
p = 1/60, C f = C ′

f = 5/60. Let C = C(η, β), Clow = C(ηlow,

βlow), and Chigh = C(ηhigh, βhigh), so we derive the cost C, Clow and Chigh. The average
cost vs time to rejuvenation t0 is shown in Figure 13. The optimal intervals for the cost
models are as short as 61456 to 138649 minutes, while the optimal intervals for the
availability models are 67309 to 146814 minutes.

6. SIMULATION APPROACH IN ALT

We develop a discrete-event simulation program using C++ to simulate the TPC-W
experiment in Section 3, so as to cross validate the statistical results derived from the
aforementioned IPL-Weibull models in Section 4. And we also estimate the steady-state
availability from the simulation model with rejuvenation to cross-validate the results
of the semi-Markov availability model of the previous section. Figure 14 shows the
queueing model of the system. In this simulation model, each client represents one EB
in our experiment, and simulates the EB’s actions of sending requests and receiving
responses. Following the experimental setup presented in Section 3, we select the
workload to be 100 clients. The arriving requests while the server is busy are placed
into the queue. Considering that the server in our experiment has only one CPU, we
configure the server in the simulation program to work at a FCFS (First-come, First-
served) mode, and the capacity of the queue is set to the sum of Tomcat’s buffer length
(acceptCount = 100) and max number of threads (maxThreads = 200) [Apache 2011c].
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Fig. 14. Queueing model of the simulation program.

Fig. 15. Work flow of one client in the simulation program.

The TPC-W benchmark defines three distinct mixes of web interactions: Browsing,
Shopping and Ordering. The term, web interaction, refers to a complete process of
requesting for one of the 14 different pages in the e-commerce web site. It includes
one or more HTTP requests for HTML documents, image files or other web objects.
Each EB or client starts requesting the Home Page, and then randomly selects the
next navigation option according to the current mix of web interactions [TPC 2002].
We select the Shopping mix in our experiment, so that is used in our simulation. We
configure each client to request one or more web interactions, starting with the Home
web interaction and ending as defined in TPC-W specification [TPC 2002], and each
EB’s working cycle is preceded by a Ramp-up Time, and ended by a Ramp-down Time of
1200 seconds, as shown in Figure 15. A web interaction in the TPC-W experiment can
be divided into two phases. In the first phase, EB sends an HTTP request to the server
asking for the HTML document, and then parses the HTML code to get the URLs of
other web objects of image files. In the second phase, EB sends HTTP requests for
these image files. A web interaction completes when all of the image files are received
or a timeout occurs. The quantities of image files on different pages may be different,
so are the number of HTTP requests the client sends for different pages. When a web
interaction finishes, EB enters a “think” phase. “Think Time” is taken from a negative
exponential distribution, which is generated by Eq. (12), where r is a random number
from a uniform distribution such that 0 < r < 1, and t is the mean think time [TPC
2002]. We have used t as 7.0 seconds in both the simulation and experimental settings

T = − ln(r) · t. (12)

The simulation model is detailed with individual client request generation and pro-
cessing, memory leak injection, ALT and rejuvenation. Our simulation model has the
following requirements.

(1) It must simulate each EB request generation and processing;
(2) It must simulate each EB’s visiting 14 pages following the TPC-W Specification;
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(3) It must simulate the memory leak injection at different accelerated level as well as
normal use level;

(4) It must simulate the full GC represented in the experimental settings;
(5) It must simulate the rejuvenation in the SMP model.

We measured the response time of all the HTML documents and image files in the
experiment under a non-queuing condition, in which there is only one EB so that there
exists at most one HTTP request being processed by the server. For each HTTP request,
the response time is the time measured when EB received the last byte of the response
minus the time when EB sent this request. In our simulation program, we use the
measured mean response time of this non-queuing case as the mean service time of
each request. We test the EB requesting HTML file and image files of each page, and
14 pages in total, to get the service time distribution of each request in a page. We made
three test runs under the same experimental setup as well as the same interval of EB’s
running one session, and we obtain 2 to 13 service time samples for different pages
caused by different visiting probability. For example, the probability of EB visiting the
Search Request Page is higher than probabilities of visiting other pages according to
TPC-W specification, so we may get more samples for visiting Search Request Page.
We did not obtain the service time of the Admin Confirm Page due to its extremely
low visiting probability, and the Admin Confirm Page’s service time is calculated by
a similar attribute page of Admin Request Page. In our simulation model, the service
time distribution of different requests for a page is deterministic represented as the
sample mean of each request type.

In order to characterize the memory leak behavior, we need to test the parameters
related to memory. Four parameters are used to describe the heap memory status of
the server: the memory capacity, the system reserved memory, the current memory
usage, and the amount of memory that can be reclaimed by the garbage collector. In
the current simulation settings, the first two parameters are fixed values, while the
last two are variables, which change as the simulation goes forward. The memory
capacity is 127729664 bytes, which is obtained from the Young plus Old heap memory
of Tomcat in our experiment. The memory capacity does not consist of the Permanent
zone because the usage and the capacity of this zone is substantially unchanged during
our experiment, thus it does not affect the injection behavior in the simulation model.
The system reserved memory is used to keep the Tomcat critical components running,
such as the connector and the servlet container systems, and it is not allowed to be
injected as well as collected by garbage collector. We observe 93 test runs of ALT of
our experiments to obtain 93 injection times samples, using the test bed in Section 3.1,
with different values of N. We obtain the sample mean of the memory injections of 101
when the server failed. So we calculate the reserved memory, which equals the memory
capacity minus the injected memory, that is, 21823488 bytes.

Figure 16 shows the memory usage and GCs in the first 30,000 seconds of our nonac-
celerated experiment, in which 100 EBs are used. We observe that the full GC runs
approximately every one hour in our experiment. However, the Young GCs show no
obvious regularity. Moreover, we measure the memory usage by combining the Young
and old heap memory together, as a result we omit the Young GC in the simulation.
When processing requests, the server need to consume heap memory to create tempo-
rary objects, which will become recyclable if there exist no references to them, thus the
temporary objects will be collected by one of the above GCs. We measured the memory
consumption rate of Young plus Old heap memory (denoted as v) between two full GCs,
such as the time intervals a, b and c in Figure 16. In the simulation, which is calculated
by Sen’s slope as v = 2462.9 bytes/s. Accordingly, the memory consumed by processing
one request is defined as (tj − ti) · v, where tj is the time when the current request
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Fig. 16. Memory usage and GC.

Table VI. TTFs of Different Accelerated Levels in
Simulation (seconds)

TTF(S1) TTF(S2) TTF(S3) TTF(S4)
639.25 1009.68 1498.46 1976.61
597.71 971.06 1512.30 1822.65
664.98 974.30 1440.09 2010.60
609.22 1105.74 1435.68 1914.24
590.30 948.04 1385.46 2072.92
585.29 966.59 1456.35 2096.28
588.89 993.46 1356.51 1984.33

finished, and ti is the time when the last request finished. Therefore, the amount of
required memory due to process request as well as the recyclable actions after the
request is processed by full GC can be simulated. The memory injection method in
the simulation is the same as the one we described in Section 3.2. Depending on a
randomNumber between 0 and N, we randomly inject about 1-megabyte of memory
leak to the server when the Search Request Page is processed. The injected memory
will not be added to the recyclable memory, so it will never be collected by the garbage
collector. When the unrecyclable memory reaches the capacity of the server, the server
fails, and it must be restarted to get back to work again.

Our simulation program first cross-validate against the ALT experimental results.
We carried out seven repeated simulation experiments at acceleration levels from S1 to
S4, where N equals to 4, 8, 12, and 16, respectively. From the simulation, we obtained
the TTF samples and the memory consumption rate in each replication. The TTFs are
shown in Table VI, and the memory consumption rates are shown in Table VII. Our
simulation employs the different N values to simulate the ALT experiment. Since the
N value can not control the memory consumption rate obtained from the experiment
precisely, the TTFs of the ALT experiment as well as the simulated are different. In
both the ALT experiment and the simulation, and at each stress level, the production
of the MTTF and the mean memory consumption rate equals the system memory
usage. We calculated the production of MTTF and the mean memory consumption
rate at each stress level in the experiment as well as in the simulation, respectively.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 10, No. 1, Article 9, Pub. date: January 2014.



Software Rejuvenation Scheduling Using Accelerated Life Testing 9:19

Table VII. Memory Consumption Rate and N in Simulation

Memory
consumption
rate (kB/s) N Memory consumption rate per replication

191.10 4
186.42, 190.46, 175.86, 190.67, 189.26,
206.46, 198.54

111.92 8
115.49, 113.10, 116.79, 96.23, 113.97,
117.53, 110.32

76.09 12
74.01, 71.03, 73.67, 80.51, 81.94,
74.47, 77.05

55.04 16
55.13, 59.59, 54.61, 55.13, 54.93,
52.21, 53.70

Table VIII. Simulation Results in
User Level (N = 69000)

Memory Time
consumption to
rate (kB/s) failure (s)
0.0122509 8051540
0.0123884 7648960
0.0153444 7081620
0.0138045 8350660
0.0146280 8146790
0.0146254 7334810
0.0121648 8391360
0.0155159 7061190
0.0135798 7485940
0.0129997 6714810
0.0145606 7208990
0.0123750 7891720
0.0124154 6904560
0.0133905 7480030

In the experiment, the productions are 114475.374 kB at S1, 114331.424 kB at S2,
112653.679 kB at S3 and 110457.990 kB at S4. In the simulation, they are 116724.699
kB at S1, 111421.956 kB at S2, 109622.320 kB at S3 and 109117.822 kB at S4. It can
be seen that the system memory usages in accelerated levels from simulation and ALT
are all close.

Accordingly, we carried out 14 repeated simulation when N = 69000, while the
memory consumption rate is close to that obtained from the normal level in our
experimental testbed (Section 4). From the simulation results in Table VIII, we obtain
the sample mean of memory consumption rate of 0.013575 kB/s, with its 90% CI being
(0.013031, 0.014118) kB/s, and also we obtain the MTTF of 7.553784E+6 seconds,
with its 90% CI being (7.306314E+6, 7.801254E+6) seconds, or (1.217719E+5,
1.300209E+5) minutes. This results of memory consumption rate are all calculated
with the Sen’s slope estimation method. We define the relative error RE, at normal
level, between the MTTF from the simulation, MTTFsim, and IPL-Weibull in Section 4,
MTTFALT , as RE = |(MTTFsim − MTTFALT )|/MTTFsim, which equals 0.764%. It can
be seen that the 90% CI of MTTF at normal level obtained from the simulation results
falls into that of obtained from the experimental results, thus we consider that the
simulation model represents well the experimental testbed.
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Table IX. Availability Results of the Simulation Model

Rejuvenation
Availability

90% CI
Trigger (Seconds) Lower Upper
4038540 0.99998175 0.99997937 0.99998386
5982960 0.99998669 0.99998464 0.99998847
7306314 0.99998536 0.99998236 0.99998786
7553784 0.99997974 0.99997559 0.99998319
7801254 0.99997638 0.99997151 0.99998043
8400000 0.99996446 0.99995690 0.99997069
8808840 0.99999026 0.99998848 0.99999177
9600000 0.99996115 0.99995295 0.99996792
10800000 0.99996105 0.99995286 0.99996782

Fig. 17. Availability comparisons between semi-Markov model and simulation model.

Next, we introduce both reactive repair and rejuvenation in our simulation program
to cross-validate the availability computed from the semi-Markov model. We take nine
different rejuvenation trigger intervals in our simulation model with reactive repair
at non-accelerated level, and use 12 replications at each rejuvenation trigger interval
of 4038540, 5982960, 7306314, 7553784, 7801254, 8400000, 8808840, 9600000, and
10800000 seconds, among which 5982960 is the optimal trigger interval obtained from
the semi-Markov model.

Then we estimate the system availability at each rejuvenation trigger and the 90% CI
applying the F-distribution from the simulation model with reactive repair, as shown
in Table IX. We plot the simulation estimated availability results against the semi-
Markov model, in Figure 17. Furthermore, we show nine discrete availability points as
well as their 90% CIs and a zoom-in in Figure 18. From these figures we can see that
the simulation availability results have a reasonably good match with those from the
semi-Markov model.

7. CONCLUSION

In this article, we obtain the accelerated life test results by injecting memory leaks
in an ALT experiment for an on-line bookstore subject to aging due to memory leaks.
We develop a detailed simulation model to cross validate the MTTF at nonaccelerated
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Fig. 18. Zoomed: Availability comparisons between semi-Markov model and simulation model.

level. Given that the measurements in experimental testbed with rejuvenation would
take inordinate time to estimate system availability, the simulation model is used to
estimate availability. In a semi-Markov process, we use Weibull time to failure distri-
bution to compute availability and cross-validate with the results obtained from the
simulation model. The semi-Markov model is then used to optimize the software reju-
venation trigger interval so as to maximize the availability or minimize the operational
cost.

In a future paper, we will construct the measurement experiment with rejuvenation
to obtain the availability vs optimal rejuvenation trigger interval, to cross-validate
against the SMP model. Second, other than the memory leak injections in ALT, we will
construct the experiment of injecting the memory fragmentation using ALT to study
the application failure and optimal rejuvenation trigger interval. Finally, we will use
importance sampling technique for efficient simulation.
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MACÊDO, A., FERREIRA, T., AND MATIAS, R. 2010. The mechanics of memory-related software aging. In Proceed-
ings of the 2010 IEEE Second International Workshop on Software Aging and Rejuvenation (WoSAR).
IEEE, 1–5.

MARSHALL, E. 1992. Fatal error: How patriot overlooked a scud. Science (New York, NY) 255, 5050, 1347.
MATIAS, R., BARBETTA, P. A., TRIVEDI, K. S., AND FILHO, P. J. F. 2010a. Accelerated degradation tests applied to

software aging experiments. IEEE Trans. Reliab. 59, 1, 102–114.
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