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Abstract

This paper presents a SRGM (software reliability growth model) with both change-point and environmental function based on NHPP
(non-homogeneous Poisson process). Although a few research projects have been devoted to the change-point problems of SRGMs, con-
sideration of the variation of environmental factors in the existing models during testing time is limited. The proposed model is one of a
few NHPP models, which takes environmental factors as a function of testing time. FDR (fault detection rate) is usually used to measure
the effectiveness of fault detection by test techniques and test cases. A FDR function after the change-point of the testing is proposed,
which is computed from both environmental factors and FDR before the change-point of the testing. A NHPP SRGM with both change-
point and environmental function called CE-SRGM is built which integrates the FDR before the change-point of the testing and the
proposed FDR function after the change-point of the testing. CE-SRGM is evaluated using two sets of software failure data. The

experimental results show that the predictive power of CE-SRGM is better than those of other SRGMs.

© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Reliability is a primary concern for both software devel-
opers and software users. With the rapid development of
computer technology, computers are widely used to control
safety-critical and civilian systems. High quality software
products are greatly demanded in those application areas.
To determine system reliability, the software reliability
must be evaluated carefully. Many mathematical models
called SRGMs (software reliability growth models) have
been developed to describe the software-debugging phe-
nomenon (Musa et al., 1989; Lyu, 1996; Huang et al.,
1997; Pham et al., 1999; Kuo et al., 2001; Malaiya et al.,
2002; Huang and Kuo, 2002). Under the assumption that
testing is performed in accordance with a given operational
profile (Lyu, 1996), SRGMs use the failure history
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obtained during testing to predict the field behaviors of
the program. NHPP models, as a class of SRGMs (Musa
et al., 1989), are extensively used. NHPP SRGMs have
been quite successful tools in practical software reliability
engineering (Pham et al., 1999; Malaiya et al., 2002).
Most software reliability models assume that each fail-
ure occurs independently and randomly according to the
same distribution during the fault detection process. How-
ever, in more realistic situations, the failure distribution
can be affected by many factors, such as operational envi-
ronment, testing strategy and resource allocation. Once
these factors are changed during the software-testing
phase, the software failure intensity function could increase
or decrease non-monotonically, which is identified as a
change-point problem (Zhao, 1993). In general, the FDR
(fault detection rate) is used to measure the effectiveness
of fault detection of test techniques and test cases. At the
beginning of the testing, the FDR depends on fault discov-
ery efficiency, fault density, test effort, and inspection rate.
Later, in the middle stage of the testing phase, the FDR
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depends on some parameters such as the failure-to-fault
relationship, the code expansion factor, the skill of test
teams, program size, and software testability, etc. Conse-
quently, the FDR may be changed (Huang, 2005). The
change-point problems have been studied by many
researchers (Zhao, 1993; Chang, 2001; Zou, 2003; Shyur,
2003; Huang, 2005), and a few change-points are suggested
by those researchers to avoid the piecemeal effects (Zou,
2003).

Although reliability models with change-points achieve
a great improvement in the accuracy of evaluation of soft-
ware reliability (Zou, 2003; Shyur, 2003; Huang, 2005), the
models describe the difference of testing environments
before and after the change-point using two entirely differ-
ent FDRs, while traditional models have ignored such dif-
ferences completely. In fact, there are both differences and
links between the FDRs before and after the change-point.
Software testing is an integrated and continuous process.
The software testing process consists of several testing
stages, including unit testing, integration testing, and sys-
tem testing. At the stages of testing, the test teams and
the operating systems are similar. So, the FDRs before
and after the change-point should have some links with
each other because of the similarity of the environments,
and these links can be described using environmental fac-
tors. Environmental factors that profile the software devel-
opment process have much impacts on software reliability,
which is studied by some researchers (Zhang and Pham,
2000; Zhang et al., 2001), who identify six factors that have
the most significant impact on software reliability including
software complexity, programmer skill, testing effort, test-
ing coverage, testing environment, and frequency of pro-
gram specification change. Huang only used the factor of
testing effort to link FDRs together (Huang, 2005). Envi-
ronmental factors include many other important factors
that affect software reliability in addition to the testing
effort, which need to be considered and incorporated into
the software reliability assessment (Zhang and Pham,
2000). So, environmental factors can be used to associate
the FDR before the change-point with FDR after the
change-point.

In order to quantify the environment mismatch due to
the change-point problems of testing, a environmental
factor proposed by Hoang Pham is used to describe the dif-
ferences between the system test environment and the field
environment (Zhang et al., 2002). In fact, the environments
that respective phases experience during the software test-
ing process are also different, and thus the environmental
factors of Pham are extensively applied to the case where
the testing phase of software has the change-point. Hoang
Pham et al. define the environmental factor as k=
brest/brieia, Which is used to link the FDRs of the testing
phase and the field operational phase, and by and bgeg
represent the long-term average per fault failure rate during
the system test and the field, respectively. Hoang Pham
et al. assume that the environment factor is constant. From
the aspect of the software testing process, the testing phase

is based on a testing profile, develops test cases, and uses
various test strategies (such as boundary value test, equiv-
alence class test, path test considering coverage ratio). Dif-
ferent testing cases have different failure detection
capability. At any of the testing phases, testers will firstly
run the test cases with strong testing capability and high
percentage of coverage to improve the testing speed and
efficiency, which will lead to reduction of the FDR. If the
testing transfers to a new phase, the FDR still decreases
similarly. It is very difficult to ensure that the two FDRs
decrease in a same proportion during the testing phases.
Therefore, for better description of the impact of environ-
ment on the FDR, a function varying with time should be
used to describe environmental factors.

The objectives of this paper are, first, to link different
testing phases using environmental factors and change-
point technique, second, to analyze the changing trend of
environmental factors, and third, to incorporate the envi-
ronmental function and the change-point to build SRGM,
so that the assumed conditions of the model are closer to
the actual environment of software testing, thereby
improving the accuracy of evaluation of reliability.

The paper provides three primary contributions as
follows:

1. The problems of existing models with the change-point
and classic models occurring when describing software
testing are analyzed.

2. The benefits of using environmental factors to associate
the FDR before the change-point with the FDR after
the change-point are analyzed, and compared with other
researchers’ methods.

3. A method for estimating the failure intensity after the
change-point is proposed. The environmental factor
k(t) can be calculated according to the testing result of
a previous version of an project or the testing result of
a similar project performed previously, and given certain
testing data before the change-point, the FDR before
the change-point, b(f), can be calculated, thereby the
FDR after the change-point can be calculated and
finally, the initial failure intensity after the change-point
can be obtained.

4. The SRGM incorporating environmental factor and
change-point is proposed, and compared with other sim-
ilar SRGMs based on two sets of failure data. The com-
parison result shows that the proposed model is better
than other models within these two sets of failure data.

The rest of this paper is organized as follows. In Section
2, the changing influence of the environmental factor is
analyzed. In Section 3, the FDR after the change-point
of testing is computed from the time-varying environmen-
tal factor and the FDR before the change-point of testing,
and then a NHPP model with change-point is derived
which integrates the FDR before the change-point of test-
ing and the proposed FDR function after the change-point
of testing. Section 4 evaluates the proposed SRGM and
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other NHPP SRGMs using two sets of software failure
data. Finally, conclusions are given in Section 5.

2. Environmental factors varying with the testing process

2.1. Analysis of environmental factors varying with the
testing process

The FDR is used to measure the effectiveness of fault
detection of test techniques and test cases. The three kinds
of FDR functions during software testing are as follows:

(1) Constant b (Goel and Okumoto, 1979).

(2) An increasing function with respect to the testing
time (Pham et al., 1999).

(3) A decreasing function with respect to the testing time
(Yamada et al., 1983).

(4) First increasing and then decreasing function with
respect to the testing time (Liu et al., 2005).

Therefore, if the same SRGM is used before and after
the change-point, there are four kinds of cases for the
FDRs before and after change-point as shown in
Fig. 1(a)-(d), where 7 is the change-point, and byq?)
denotes the FDR before the change-point, b,{(¢) the FDR
after the change-point. It can be seen from Fig. 1 that,
the environmental factor is a constant in the first case
and may be a variable in the other three cases. Thus, more
generally, the environmental factor should be defined as a
function of time.

A
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To account for the time-varying environmental factor,
we propose the environment factor function varying with
testing time. Let by(7) denote FDR before the change-
point, and b,(¢) denote FDR after the change-point of test-
ing. Thus, the varying environmental factor is defined as
follows:

k(t) = bur(t) /bar (1)

Through the above analysis, the environmental function
should be a varying form. In this paper, the change-point
analysis is based on the assumption that there is one
change-point.

To further explain the changing trend of the environ-
mental factor with time, an analysis is made below using
actual failure data. The average time-varying environmen-
tal factor is defined as follows:

k(t) = bur (1) /bar (1) 2)

where by(1) and by (t) represent the average FDRs before
and after the change-point of testing.

Assuming the change-point occurs at time 7, and after
that environment of testing is changed, the testing ends
at f.nq. The expected number of faults detected and
removed by time 7 is m(z). After the change-point of test-
ing, the expected number of faults detected and removed
by time 7 is m(¢), the actual number of total faults detected
and removed during time ¢ is N(¢). The number of residual
faults, N(¢), can be calculated as

N(t) =a—N(t) (3)

t € (1, +o0] (1)

FDR

(d)

Fig. 1. (a) Constant FDR, (b) an increasing FDR function with respect to the testing time, (c) a decreasing FDR function with respect to the testing time
and (d) first increasing and then decreasing FDR function with respect to the testing time.
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N(¢) can be obtained by replacing a with its least squares
estimate (LSE) 2 of G-O model applying all the testing
failure data. The failure rate after the change-point of the
software is given by

At) = bar (1) X la = m(1)] (4)
The following equation can be used for the average
failure rate calculation:

At) = % °

where N(t;) is the actual total number of faults detected by
time 7;.

A variation of (4) can be obtained by replacing m(¢) with
N(t), A(t) with A(¢). The following alternative representa-
tion can be used for the average FDR calculation:

byt (1;) = &j(ijt\;)(ti) (6)

Discrete and varying b, (¢) can be obtained by applying
Eq. (6), which can be used to derive discrete and average
time-varying environmental factors of k(¢), and thus the
changing influences of time-varying environmental factor
can be calculated as follows:

k(t;) = boe(t:) /bas(t;)  t; € (T, tend] (7)

2.2. Numerical and data analysis

The discrete time-varying environmental factors are
derived via analysis of real failure data sets (Ohba, 1984;
Musa et al., 1989). The first set of real data of PL/I data-base
application, DS1, was from a study by Ohba (1984), and the
second data set, DS2, was reported by Musa et al. (1989)
based on failure data from a real time command and control
application system. For both sets of failure data, assuming
the change-point 7 is given since the testing strategy and
resource allocation can be tracked during software develop-
ment process (Zhao, 1993; Musa, 1998; Zou, 2003; Shyur,
2003). The change-point t of DS1 and DS2 are located
around the sixth weeks and the eighth week (Zhao, 1993;
Chang, 2001; Zou, 2003; Shyur, 2003; Huang, 2005).

2.2.1. Analysis with first data set and model selection

The G-O model, Yamada delayed S-shape model and
logistic growth curve model are fit to the failure data
(Ohba, 1984). The parameter’s value of these models can

Table 1
Goodness-of-fit of three models for the first data set

Comparison criteria SSE  R-square LSE

G-O model 332 0.9383 a=236,b=0.115
(Goel and Okumoto, 1979)

Yamada delayed S-shape 187.5 0.9751 a=128.5, b =0.6254
(Yamada et al., 1983)

Logistic growth curve model ~ 108.9  0.9856 a=112.6, A =19.37,

(Yamada et al., 1983) b=1.184

be estimated using least squares estimate method and are
listed in Table 1, in which the goodness-of-fit is shown.
In this analysis, the goodness-of-fit of the curve is mea-
sured by the sum of squares of errors, SSE, and correlation
index of the regression curve equation, R-square. The SSE
and the R-square are defined as follows:
SSE = (v, —m(%))’ (8)
=1
n ~ —\2
1 (i) ~ 5)
n —\2
Yo —y)
where, n represents the number of failures that have been
detected in the failure data sets, m(Z) represents the
estimated value of the accumulated number of failures up
to the time #;, and y, represents the observed value of the
accumulated number of failures up to the time z;:

1 n
y= 7 ;J’i (10)

The smaller the value of SSE is, the better the curve fits.
The R-square can take on any value between 0 and 1, with
a value closer to 1 indicating a better fit.

From comparisons of these models, the goodness-of-fit
of logistic growth curve is better than that of the others,
so the logistic growth curve model is selected as the model
that fit the failure data before the change-point of testing.
The byp(t) can be concluded as follows:

dm(¢)

R-square =

©)

2 = bl (a = m() (1)
The mean value function of logistic growth curve is

a
) = T e 12)

By substituting (12) into (11), the FDR of by{#) can be
derived as follows:

b

bbf(l) = 7(1 +Ae*b’) (13)

bpi(t) of Eq. (13) is the non-decreasing S-shape, which
denotes the testers learning-process. The learning is closely
related to the changes in the efficiency of testing during a
testing phase. The idea is that in organizations that have
advanced software processes, testers might be allowed to
improve their testing process as they learn more about the
product (Pham et al., 1999; Zhang et al., 2002). This could
result in a fault detection rate increase monotonically over
the testing period. As the testing continues, the increase of
FDR becomes slow gradually, the failure intensity of soft-
ware will decrease significantly, the effectiveness of the test-
ing will be lowered, and thus the tester will adopt new testing
technologies and measures to improve the number of fail-
ures detected within a unit time, therefore the change-point
is generated. by;(¢) can be approximately replaced by the
FDR at the maximum level before the change-point of
testing, bpr, which can be concluded as follows:
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Fig. 2. Average fault detection rate after the change-point.

_ b
—lim——2 = 14
by = lim e =0 (14)

bar(2) represents the average FDR after the change-point of
testing, which can be derived using real failure data as
shown in Fig. 2.

The changing trends of k(¢) is shown in Fig. 3.

2.2.2. Analysis with the second data set and model selection

Since the data before the change-point of testing shows a
S-shaped pattern (Musa et al., 1989), the logistic curve and
Yamada S-shaped model are fit to the failure data of test-

ing. The parameter’s value of these models can be esti-
mated using least squares estimate method and are listed
in Table 2, in which goodness-of-fit is shown. The logistic
growth curve is selected as the model that fit the failure
data before the change-point of testing.

b.s(t) represents the average FDR after the change-point
of testing, which can be derived using real failure data as
shown in Fig. 4.

The changing trends of k(¢) is shown in Fig. 5.
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Fig. 4. Average fault detection rate after the change-point.
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Fig. 3. Environmental factor of the first data set. Fig. 5. Environmental factor of the second data set.
Table 2
Goodness-of-fit of logistic model and Yamada model for data (Musa et al., 1989)
Comparison criteria SSE R-square LSE
Logistic growth curve model (Yamada et al., 1983) 11.4 0.9483 a =280, 4=245.7, b =0.4908

Yamada delayed S-shape (Yamada et al., 1983) 29.1

0.8647 a =200, b=0.05
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2.2.3. Description of environmental function

From the above experiments of two data sets, the
approximately decreasing trends of k(¢) are derived. This
can be explained as following: with the testing proceeding,
the effective use of testing strategies and tools of non-ran-
dom testing makes the average FDR after the change-point
of testing approximately non-decreasing, thus the average
environmental factor, k(¢), is decreasing with time. The
approximately decreasing trend, of k(¢), can be described
as follows (Yamada et al., 1983):

k(t) = B - exp(—0 - 1) (15)

3. A NHPP model with change-point and environmental
function

The change-point problems have been studied by many
researchers (Zhao, 1993; Chang, 2001; Zou, 2003; Shyur,
2003; Huang, 2005), and the same SRGMs are built before
and after the change-point. However, the environment
changes at the change-point. At the beginning of the test,
testers may improve the test process rapidly as they learn
more about the software product, and the FDR depends
on the learning ability of testers. As time passes by, the
learning-process slows down, the effective use of testing
strategies and testing techniques makes the FDR higher
than random testing (Beizer, 1990). Therefore, the SRGMs
are different at the change-point. In multitudinous non-
homogeneous Poisson reliability models, the two most
important parameters are the number of initial software
faults and the FDR. If no faults are introduced into the soft-
ware, the total number of faults remains constant, therefore
the most important parameter is the FDR (Kuo et al.,
2001). A certain relation can be established between the
testing phase before and after change-point when establish-
ing the software reliability model with change-point. How
to obtain the FDR after the change-point of testing from
the FDR before the change-point of the testing phase?
The FDR after the change-point can be transformed from
the environmental factor and the FDR before the change-
point of testing. It can be derived by Egs. (2) and (15):

b bos b * Dxt
but) = ) — ) e

(16)

A SRGM with change-point and environmental func-
tion can be built, and the present model assumes:

(1) The failures of software testing obey NHPP.

(2) Once a fault is detected, it will be eliminated at once,
and no new faults are introduced.

(3) The failure intensity at any time is proportional to the
number of faults hidden in the software.

(4) Before the change-point of testing, the fault detection
rate captures the learning-process of software testers;
and after the change-point of testing, the fault detec-
tion rate is the integrated result of environmental
effects and the FDR before the change-point.

The mean value function before the change-point of the
testing can be concluded as follows:
m(t)

a
1+ Axexp(—bxt)

r<t (17)

where 7 is the change-point occurs during software testing,
and after that the software is delivered to another environ-
ment by applying different testing strategies and testing
tools.

With respect to the mean value function, according to
assumptions, the mean value of cumulative failures after
the change-point of testing, m(¢), is

dm(¢)
dr

where b,(7) can be approximately represented by b, (¢) in
Egs. (2) and (15)

= byp(t)[a — m(t) —m™(¢)] t>1 (18)

boe  byr
bat(t) === . 19
() k(1)  Be ™ (19)
Thus, m*(7), is
m*(t) = (a — m(1))(1 —exp(—B*(t))) t>1 (20)
where,
fend
B*(t) :/ by(t)dt t>1 (21)
Constituting Eq. (19) into Eq. (21), we have
; lend l;bf * e()*f Bbf o . .
B(t)—/T 3 dt—B—a(e —e”)
_ i Olend _ Jt
—Ba(e e’) t>1 (22)

Consequently, the mean value functions before and after
the change-point of testing are as follows:

a
1+ A4xexp(—bx*t)

(a —m(z)) (1 - e’/%‘)(ea’e“d’e&)) +m(t) t>1
(23)

The model addresses the FDR of change-point and
environmental factors. We call the model CE-SRGM.

t<1

4. Evaluation of the proposed model

In this section, we will evaluate the performance of CE-
SRGM by using real failure data sets (Ohba, 1984; Musa
et al., 1989) as described in Section 2. Since the proposed
model is new to software reliability prediction/estimation,
here we will compare its accuracy with those of some
well-known SRGMs, such as the model proposed by
Huang (2005), Goel-Okumoto (G-O) model (Goel and
Okumoto, 1979), Yamada delayed S-shaped model (Yam-
ada et al., 1983), logistic growth curve model (Yamada
et al., 1983), and Goel generalized NHPP model (Goel,
1985).
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Table 3

Comparison results of different SRGMs for the first data set

Comparison criteria LSE SSE R-square AE (%)
CE-SRGM a=374,b=0.94, 4=16.72, B=15.29, 0 = le—07 127.2 0.9951 7.76
Model proposed by Huang a=398.114, r; = 0.0473895, r, = 0.0408960 136.8 0.9879 11.20
Yamada delayed S-shape (Yamada et al., 1983) a=1374.1, b =0.1977, 320.5 0.9837 17.76
G-0 model (Goel and Okumoto, 1979) a="760.5, b=0.03227 265.6 0.9865 34.36

4.1. Comparison criteria

(1) The SSE and R-squares can show us the goodness-of-
fit of a model for the given failure data set, and are
described in Section 2.

(2) The accuracy of estimation (AE), is defined as follows
(Musa et al., 1989):

m, —a

AE — ' (24)

my

where m, is the actual cumulative number of detected
faults after the test, and « is the estimated number of
initial faults.

The capability of the model to predict failure behavior
from present and past failure behavior is called predictive
validity, which can be represented by computing the rela-
tive error (RE) for a data set (Musa et al., 1989):

m(tq) — ¢ (25)

Relative error(RE) =
q

Assuming that we have observed ¢ failures by the end of
test time 74, we use the failure data up to time /. (z. < #4) to
estimate the parameters of mi(¢). Substituting the estimates
of these parameters in the mean value function yields the
estimate of the number of failures m(ty) by 4. The estimate
is compared with the actual number ¢. The procedure is
repeated for various values of .. We can check the predic-
tive validity by plotting the relative error for different
values of ¢#,.

4.2. Model comparison with real applications

In this section, we examine the goodness-of-fit and pre-
dictive power of the proposed model and compare it with
the existing SRGMs. For both sets of failure data, the least
squares estimation (LSE) is used to estimate the parame-
ters. We consider the parameter t is given since the testing

Table 4
Comparison results of different SRGMs for the first data set

strategy and testing resource allocation can be well tracked
all the time during the software development (Zhao, 1993;
Musa, 1998; Zou, 2003; Shyur, 2003).

4.2.1. DSI

For the first real failure data set (Ohba, 1984), T maybe
located around the sixth week (Huang, 2005). Thus, the
parameters of the proposed model and compared models
can be estimated and listed in Table 3. Table 3 also shows
the three comparison criteria: SSE, R-squares and AE. The
values of SSE, R-squares and AE of our proposed model
are better than those of the model proposed by Huang with
k =2.63326 and =6, G-O model and Yamada delayed
S-shaped model.

Generally speaking, confidence intervals represent a
range of values within which parameters are expected to
lie with a certain confidence (Musa et al., 1989).
Fig. 6(a)—(c) shows the cumulative faults, fitted faults,
and the 95% global confidence bound of the pro-
posed model, G-O model and Yamada delayed S-shape
model.

The failure data of the first data set and the fitted curves
of the proposed model and other famous NHPP SRGMs
are shown in Fig. 6(d). Fig. 6(e)—(g) depicts the relative
errors for G-O model, Yamada delayed S-shaped model
and the proposed model for the first data set, respectively.
It is noted that the relative error of the proposed model
approached zero faster compared with G-O model and
Yamada S-shaped model. From these figures and tables,
it can be concluded that the proposed model provides a
better prediction than G—O model and Yamada S-shaped
model.

4.2.2. DS2

In this section, the predictive power of the proposed
model and other SRGMs are tested using the second fail-
ure data set (Musa et al., 1989). For this data set, T maybe
located around the eighth week (Zou, 2003; Huang, 2005).
Thus, the parameters of the proposed model and compared

Comparison criteria LSE SSE R-square AE (%)
CE-SRGM a=140, b =0.4737, A =378.9, B=13.45,0=0.2713 142 0.9931 17.8
Model proposed by Huang a=139.665, r; = 0.757705, r, = 0.231555 156 0.9928 25.71
Yamada delayed S-shape (Yamada et al., 1983) a =200, b =0.09659 567 0.9042 47.76
Logistic growth curve model (Yamada et al., 1983) a=154.2, A =146.1, b =0.3483 235 0.9954 21.3
Goel generalized NHPP model (Goel, 1985) a =200, b=0.0001391, ¢ =3.024 25.7 0.8256 56.8
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Fig. 6. (a) The proposed model and the 95% global confidence bound vs. time for the first data set. (b) G-O model and the 95% global confidence bound
vs. time for the first data set. (c) Yamada delayed S-shape model and the 95% global confidence bound vs. time for the first data set. (d) The failure data of
the first data set, and the fitted curves of the proposed model and other famous NHPP SRGMs. (e) RE curve for the G-O model. (f) RE curve for the
Yamada delayed S-shaped model. (g) RE curve for the proposed model.
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Fig. 7. (a) The proposed model and the 95% global confidence bound vs. time for the second data set. (b) Yamada delayed S-shape model and the 95%
global confidence bound vs. time for the second data set. (c) Goel generalized NHPP model and the 95% global confidence bound vs. time for the second
data set. (d) Logistic growth curve model and the 95% global confidence bound vs. time for the second data set. (¢) RE curve for the proposed model. (f)
RE curve for the Yamada delayed S-shape model. (g) RE curve for the Goel generalized NHPP model. (h) RE curve for the logistic growth curve model.

models can be estimated and listed in Table 4. Besides,
Table 4 also shows the three comparison criteria: SSE, R-

squares and AE. The values of SSE, R-squares and AE
of our proposed model are better than those of model



J. Zhao et al. | The Journal of Systems and Software 79 (2006) 1578—1587 1587

proposed by Huang with £k =1.27171 and t =8, Yamada
S-shaped model, Goel generalized NHPP model and logis-
tic growth curve model.

Fig. 7(a)—(d) shows the cumulative faults, fitted faults,
and the 95% global confidence bound of the proposed
model, Yamada delayed S-shape model, Goel generalized
NHPP model and logistic growth curve model for the sec-
ond data set. Fig. 7(e)—(h) depicts the relative errors for the
proposed model, Yamada delayed S-shape model, Goel
generalized NHPP model and logistic growth curve model
for the second data set.

It is noted that the relative error of the proposed model
approaches zero faster compared with Yamada delayed S-
shaped model, Goel generalized NHPP model and logistic
growth curve model.

From these figures and tables, it can be concluded that
the proposed model provides a better prediction than Yam-
ada delayed S-shaped model, Goel generalized NHPP
model and logistic growth curve model.

4.3. Future work

(1) Analyze the environmental factors affecting software
testing comprehensively, and perform modeling and
quantitative analyses on the environment factors.

(2) Research the influence of the quantitized environ-
mental factors on the effectiveness of software testing.

(3) Introduce the model of the environmental factors
into the SRGM so as to make the modeling process
of software reliability more reasonable.

5. Conclusions

In this paper, the changing trend of the time-varying
environmental factor is analyzed by applying actual failure
data of testing, which can fairly quantify the mismatch
between the testing environments before and after the
change-point. The FDR after the change-point of testing
is computed from the time-varying environmental factor
and FDR before the change-point of testing, and A NHPP
model called CE-SRGM is proposed which incorporates an
environmental function and the change-point. Finally, the
CE-SRGM is compared with other SRGMs, and the com-
parison results shows that predictive power of CE-SRGM
is better than those of other SRGMs.
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