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Abstract

Web crawler detection is critical for preventing unauthorized extraction of valu-
able information from websites. Current methods rely on heuristics, leading to
time-consuming processes and inability to detect novel crawlers. Privacy pro-
tection and communication burdens during training are overlooked, resulting in
potential privacy leaks. To address these issues, we propose a federated deep
learning crawler detection model that analyzes access behaviors while preserv-
ing privacy. First, individual clients locally host website data, while the central
server aggregates information for detection model parameters, eliminating raw
user data transmission or access. We then develop an innovative algorithm con-
structing access path trees from user logs, effectively extracting temporal and
spatial behavior features. Additionally, we propose a novel time series model with
fused additive attention, enabling effective web crawler detection while preserv-
ing privacy and reducing data transmission. Finally, comprehensive evaluations
on public datasets demonstrate robust privacy protection and effective detection
of emerging crawler types.

Keywords: Web crawler detection, federated deep learning, temporal-spatial
behavior, access path tree, privacy protection
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1 INTRODUCTION

Web crawling involves the automated retrieval of target website resources by simu-
lating user requests, without human intervention. Excessive web crawling can occupy
normal website bandwidth, degrading quality of service (QoS) [31]. With advancing
technology, crawler diversity has increased, enabling usage across Internet industries
like search engines and public opinion mining [38]. Concurrently, means of leverag-
ing crawlers to gather information continue evolving. Crawlers often evade detection,
illicitly accessing diverse websites, enabling data theft and illegal access. Competitor
misuse of illicitly gathered web data can induce major financial losses. Thus, detect-
ing crawlers is an urgent priority. For instance, e-commerce leaders like Weee Inc. and
Alibaba employ crawler detection to impede malicious access, securing websites and
improving user experience [16, 29].

Although web crawler detection studies have been extensively studied in today’s
network security field, current crawler detection still faces three major challenges.

The first challenge is that existing crawler detection models rely heavily on security
experts to manually create detection rules[18, 28, 36]. These rules mainly look at how
different parts of a website are accessed to identify crawlers. Although this approach
has worked well in experiments, it requires a lot of human effort and cannot easily
detect new crawlers. The second challenge is that servers send local user data to a cen-
tral training server. This creates significant bandwidth pressure during transmission,
heavily occupying precious network resources for crawler training[12, 18, 20, 28, 36, 37].
For example, many website requests during model training can inconvenience normal
users accessing the server. The third challenge is that existing models directly use
original data containing private user information for training[11, 36]. For example, ana-
lyzing user locations to detect crawler geography can lead to sensitive data like phone
numbers and device IDs being transmitted. This risks privacy data leakage issues.

To address those challenges currently faced by web crawler detection, we propose a
federated deep learning[23] crawler detection model integrated with privacy protection
mechanisms, named TS-Finder. To our knowledge, this is the first work to incorporate
the concept of privacy protection into the field of crawler detection, as shown in Fig.
1. Initially, the model innovatively adopts a strategy to train with local data on-site,
completely abandoning the traditional practice of sending data to a central server
for training. The role of the central server is transformed to only aggregate weight
parameters uploaded from the local models, significantly reducing the risk of privacy
data leakage. Furthermore, we have designed a novel dataset processing algorithm that
refines user behavior characteristics by conducting an in-depth analysis of users’ access
time distribution and request addresses. This enhancement significantly increases the
accuracy of the crawler detection model, enabling effective identification of new types
of crawling behavior. In the meantime, we have optimized the time series model[39]
by incorporating the output of each time point in the time series into the calculation
of the hidden layers, thereby greatly minimizing the loss of information during the
model training process. Finally, experimental validation on two public datasets[18, 25]
demonstrated that the detection model proposed in this study achieved an F1 score
of 92.28%. This result not only proves that the model is effective in detecting web
crawlers but also efficiently secures user privacy.
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Fig. 1 An example of crawler detection with hierarchical federated learning

Above all, we are the major contribution of this work is as follows:

• We propose a new web crawler detection model, TS-Finder, which is the first to
utilize user behavior analysis and privacy-preserving federated deep learning for web
crawler detection. Furthermore, we propose a user behavior analysis algorithm that
extracts behavior characteristics by creating a user access path tree based on the
user’s access addresses and time series.

• We also improve the time-series behavior detection model by extracting access time-
series behavior in time steps and using an additive attention mechanism to combine
the output of each time step in the time-series model with the final hidden layer,
which allows the model to capture more behavior information and achieve higher
detection accuracy.

• To train our proposed model, we use a federated learning algorithm, which reduces
the communication pressure between clients and the central server. We conduct
experiments and validation on two public datasets [18, 25] and compare our model
with the state of the art models. The experimental results show that our model
achieves F1 scores of 92.28% and 90.99%, respectively.

The remainder of this paper is organized as follows. Section II provides a sum-
mary of related work and research background. In Section III, we provide a detailed
description of the overall system design of the detection model, the algorithm for pro-
cessing the dataset based on user behavior, and the detection model implementation
and federated deep learning model training process. Section IV presents the results of
comparative experiments on the detection models. Finally, in section V, we provide a
conclusion to our work.

2 RELATED WORK

Web crawlers have had a profound impact on commercial data security, service resource
consumption, and business decision-making. Their role in the online environment is
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now formidable. In particular, malicious web crawlers pose severe challenges to web
services. To address this, academia has proposed various techniques for web crawler
analysis and detection. In this section, we will discuss the progress of current crawler
detection technologies and analyze the gap between them and the challenges they
currently face, as shown in Table 1.

Table 1 Comparison of Related Works on Crawler Detection Model

Work
Detection
Techniques

Emerging(Zero-
Day) Attack

Communication
Overhead

Behavior
Analysis

Privacy
Protection

Lu [22] H-Markov

Doran[10] Statistic ✓

Wan [36] Rule-Patterns ✓

Menshchikov[24] Statistic ✓

Suchacka[33] Rule-Patterns ✓

Ro[28] Long-Tail ✓

Chu [6] Using Log ✓

Rahman [27] biostatistics

Li [20] Trapping ✓

Lagopoulos [18] Content-aware ✓

Li[21] Honey Pot

Xia [37] Bert ✓ ✓

Acien [1] CAPTCHA

Gao [12] RL ✓

Our Work
FL,
GRU

✓ ✓ ✓ ✓

RL: Reinforcement Learning; H-Markov: Hidden Markov; GRU: Gate Recurrent
Unit; FL: federated learning; RNN: Recurrent Neural Network; ICA: Independent

Component Analysis; MLP: multi-layer perceptron; LSTM: long-short term memory
network; Bi-LSTM: bi-directional long-short term memory networks.

Due to the similarity between web crawlers and other web bots, the survey cov-
ers web crawlers and other web bots, such as click fraud bots targeting search engine
rankings and paid advertisements and fake browsing bots targeting product recom-
mendation systems[31, 38]. At the same time, considering that some of the work relies
on commercially confidential data and cannot disclose detailed technical details or the
necessary data descriptions, these deficiencies greatly limit the contribution of such
work so we will exclude this part of the study.

There are currently two main technical approaches for detecting malicious web
bots: feature engineering and machine learning. This section will present related work
according to these two types of approaches. The research on crawlers has been based on
feature engineering based on manual analysis. These works had good accuracy and low
computational resource consumption for detecting traditional typical crawlers, aim to
analyze and mine web bot features and artificially process the original basic features
to build a combination of features to detect web bots. For example, Li et al. propose
a honeypot system called ”honeysites”, which was deployed in 100 nodes around the
world, recorded and analyzed a large amount of web crawler traffic data, and made
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a more comprehensive investigation of the behavior patterns and basic features of
crawlers [21]. Ro et al. found that the access frequency of normal users decreased
with time and proposed a crawler detection method called Long-tail Threshold Model
(LTM) [28].

Similarly, some other scholars have performed statistical analysis of HTTP requests
and used information such as the type of requested resources [10, 21, 24, 33] and session
duration [22] to construct a probabilistic model of the session to identify web bots.
In addition, some works have attempted to use biometric techniques. These works
monitor the user’s mouse and keyboard behavior to detection of web bots [1, 6, 27].
Still, such methods require additional modifications to the system, and the user client
may also reasonably block such techniques, rendering such methods ineffective. Also,
with the improvement of user privacy laws worldwide, there is no legal support for
schemes that additionally capture user information. Most of these studies generally
rely on human-constructed interpretable features for detection, which were widely used
in practice in the early days due to their universality and interpretability. However,
the construction of these features mainly relies on the experience of researchers. It uses
artificial ways to determine the weight coefficients of each feature, which is less flexible
and less robust. In general, with the development of crawler studies, these artificially
constructed features are often easy to be circumvented. Currently, the methods based
on feature engineering alone can no longer cope with the challenges posed by intelligent
crawlers.

Unlike the above methods, deep learning techniques can learn from sequence-based
data. Natural language processing techniques heavily utilize deep learning methods
based on attention mechanisms to process sequence-based data, such as Transformers
[35], BERT [8], ALBERT [19], and GPT [26]. These methods can be extended from
natural language processing to other problems dealing with sequential data, such as
fraudulent programs and web bot detection. Liu et al. proposed a method called
local intent calibration tree-LSTM to implement the detection of fraudulent programs.
While Zhang et al. proposed a model called Attribute Sequence Embedding (AS-E)
for fraud detection, the model’s core is an encoder-decoder based module that maps
sequence-based data into an embedding vector on which a multilayer perceptron is used
for classification [40]. Some sequence-based crawler detection studies use additional
information, such as researchers from Alibaba who proposed a set of web crawler
detection models AANet [37] using user geographic information, but this requires
additional system tuning and is not universal.

The current research on web crawler detection has focused on the detection meth-
ods, while the model training methods and privacy protection issues have not received
sufficient attention. In this paper, we use the federated learning (FL) training algo-
rithm [23] to train the proposed model. Unlike standard deep learning training, the
emergence of federated learning addresses the challenge of implementing traditional
deep learning in privacy-sensitive scenarios. Federated learning consists of local devices
and a global server, where the global server connects to multiple local devices over the
network to jointly train the deep neural network model. Unlike the centralized data
collection scheme in standard deep learning, the data in federated training is widely
distributed across different local devices. Meanwhile, the global server only specifies
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Fig. 2 Design details of user behavior-based dataset processing algorithms and crawler detection
models for local detection servers

the initial training model and relevant aggregation algorithms, and does not collect
any training data. Furthermore, only the parameters relevant to the model are trans-
mitted during their communication process, and the transmission of raw data and
critical statistical information is prohibited. Therefore, while researching efficient web
crawler detection algorithm models, privacy protection must also be considered.

3 PROPOSED METHOD

This section presents the proposed method and provides a detailed explanation of the
implementation details of the dataset processing algorithm and the crawler detection
model.
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3.1 Crawler Detection System Framework

The proposed model system framework design is depicted in Fig. 2, which combines
the user’s habits, temporal, and spatial behavior of visiting sites to detect crawlers.
The dataset comprises records generated by ordinary users visiting web pages, denoted
as data = {l1, l2, l3, ..., ln}. Each record li represents a log of the user’s request, as
illustrated in Fig. 2, and includes basic information such as referrer, request, method,
resource, bytes, response, ip, useragent, and timestamp. To extract the request records
of a specific user, we group the data by ip address, resulting in gip = {la, lb, lc, .., lx},
where la, lb, lc, ... , lx represent request log records generated from a single ip address.
Thus, we treat the request data from a unique ip address as the request data from a
distinct user.

The extracted resident time series are trained into temporal features, shown in
Fig. 2, using a Gate Recurrent Unit (GRU) [9] as time series model with an additive
attention mechanism [5] to obtain the intermediate results of the visited site. The
temporal features are combined with the user habits and the spatial features of the
sites visited by the users to form input vectors of the whitening residual network. The
realization process of this model will be described in detail in the following sections.

We extract the resident time series ts and transform them into temporal features,
by training them with time series model (GRU) that incorporates an additive attention
mechanism. These temporal features are then combined with the user’s browsing habits
and spatial features of the visited sites to form input vectors for the whitening residual
network. The detailed implementation process of this model will be elaborated in
subsequent sections.

3.2 Feature Extraction and Labeling Algorithm for User
Behavior Analysis

3.2.1 Session Generation

A user’s session refers to a continuous sequence of requests made by the user over a
period of time. Our analysis reveals that the request data gip = {la, lb, lc, .., lx} con-
tains at least one user session. A session contains substantial contextual information,
user behavior, and insights into the user’s access habits, which can effectively help us
distinguish between ordinary users and crawlers. To extract the session data, we fur-
ther divide the user’s requests based on the request interval. Specifically, we set the
duration dur between requests to 30 minutes [2]. If the duration exceeds 30 minutes,
we consider it as a new session, denoted as session = {la, lb, lc, ..., ls}, where ls is the
last record of the session and the length of the session is s.

3.2.2 Request and Temporal Features Extraction

In analyzing access data, we extract users’ basic request characteristics and temporal
features, categorizing the access into two scenarios: normal access and crawler access,
for in-depth analysis. In a normal access scenario, when a regular user navigates to
a resource (for example, accessing specific book information on a library website),
the user’s browser, upon reaching the page, will also automatically request additional
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dependent resources, such as the site’s JavaScript scripts and CSS stylesheets. In con-
trast, during crawler access, the crawler’s objective is typically to extract information
contained within the page address, and after achieving this, it often does not request
further dependent resources but moves on to the next target address.

Leveraging these behavior characteristics, we abstract these features and convert
them into numerical features. In terms of resource types, we calculate the proportion of
user requests for HTML, CSS, and image resources. Regarding user request responses,
we analyze the ratio of 404 (Not Found) to 200 (OK) response codes in the sessions. For
request methods, we tally the frequency of user requests made using HTTP methods
such as POST and GET.

However, if the crawler is sophisticated and mimics the behavior of a standard
browser, it might request these dependent resources, making the aforementioned dis-
tinctions between normal and crawler accesses insufficient for accurate detection.
Therefore, we must consider additional dimensions of features, such as temporal, user
request habits, and access patterns, to more accurately identify crawler activities. The
specific methods for extracting these features will be detailed in the latter part of the
document.

To extract temporal features, we first calculate the time interval dui between each
record li timestamp and its previous record li−1 timestamp using dui = Timei −
Timei−1. An example of this user access time calculation is shown in Fig. 4A. If i = 1,
we set du1 = 0. The computation of du2 starts with dui = Timei−Timei−1, resulting
in a time series ts = du1, du2, ..., dus of length s for a session. Since session lengths
vary, we normalize the time series length to facilitate temporal model training. For
sessions with s < 180, we set dus+1, ..., du180 = 0. For s > 180, we truncate the excess
part, giving a series of length 180, ts = du1, ..., du180. We chose 180 based on statistical
analysis of our datasets [18, 25], which showed most normal users have sessions ≤ 180,
while crawlers typically exceed 180.

3.2.3 User Request Habits Features Extraction

We observe that user visits during weekends and late night/early morning hours differ
significantly from other times and can be clearly distinguished. This pattern is consis-
tent with the typical routine of an average user, with weekends and late night/early
morning reserved for rest, while weekdays and daytime are dedicated to work. In con-
trast, crawlers do not follow this pattern, allowing us to differentiate normal users
from crawlers based on this characteristic. Fig. 3A and Fig. 3B illustrate the distri-
bution of user visits over a 7-day week and 24-hour day, respectively. The peaks on
weekdays and during daytime hours, compared to weekends and nighttime, reflect the
human routine described above. This enables distinguishing human user patterns from
crawler patterns, which do not follow a weekday/weekend or daytime/nighttime cycle.

We leverage this property to extract a user’s session, denoted as session =
{la, lb, lc, ..., ls}, and abstract the user’s access habits into numerical features. By
counting the number of logs lenlw with timestamp attribute li ∈ session that fall on
weekends and knowing the size of the data volume of s in session, we can obtain the
percentage of log data volume accessed on weekends as lenlw/s. Similarly, we calcu-
late the share of log data volume accessed during rest working hours (19:00-00:00),
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Fig. 3 Distributed statistics of user access time, A: is the distribution of users visit within a week,
B: is the distribution of users visit within 24 hours one day.

working hours (7:00-19:00), and late-night hours. These metrics can be used to derive
user habit characteristics.

3.2.4 Spatial Features Extraction

The information provided by a website typically exhibits a hierarchical tree structure,
and user access generally follows this structured pattern. In contrast, crawlers, which
aim to harvest website information, may overlook or interact with the website’s hier-
archy in a manner different from that of regular users. We use this distinction in access
patterns based on the website’s hierarchy as a feature to differentiate between normal
users and crawlers and define it as a spatial feature.

We utilize the timestamps and resource addresses from user access logs to con-
struct a access path tree, from which we derive spatial-temporal behavioral features.
This approach provides a comprehensive representation of user behavior by incorpo-
rating both temporal and spatial dimensions of access patterns. From Algorithm 1,
the proposed algorithm for drawing the user access path tree in this paper. We extract
user access path trees from session = {la, lb, lc, ..., ls} session to extract the accessed
resources in the user session rsl = {rsa, rsb, rsc, ..., rss} and the list of references
rfl = {rfa, rfb, rfc, ..., rfs}.

The algorithm first checks if two input lists, rsl and rfl, have equal length using
an assert statement. It then makes copies of the lists using the copy() method. Next,
it initializes an empty dictionary called vlt to store visited links, and a variable rln to
store the length of rsl. A counter si is initialized to 0. A while loop executes as long as
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Fig. 4 Calculation of user access page time series and construction of access path tree.

si < rln and rlc is not empty. Inside the loop, it checks if the current accessed resource
appears in the referrer of the previous step. It creates lists rrfl to store referrers
containing the current resource, rfia for the indices of those referrers in rlc, and rrl
for the corresponding resources in rrfl. A list next source holds resources referred by
rrfl. The loop removes the referrer and resource from rlc and rsc. If rlc is not empty,
it adds the current resource to vlt, with value next source. si is incremented by 1 each
iteration. After the while loop, the function returns the remaining items in vlt and rsc.

As an example, we consider the accessed resource list rsl = {r1, r2, r3, ..., r11} and
the referenced list rfl = {−, r1, r1, r1, r2, r2,−, r7, r7, r8,−}, both of which have a
length of 11, as shown in Fig. 4B. We observe that the first resource accessed is r1,
followed by r2,r3, and r4, resulting in a path tree with root node r1 and leaf nodes
r2,r3, and r4. We can obtain trees with root nodes r2,r7, and r8, as well as individual
nodes such as r11, using this method. Based on the generated path trees, we can
abstract the behavioral space characteristics with numerical values. Specifically, we
calculate the number of generated trees, the tree with the most leaf nodes (in this
case, the tree with r1 as the root node has the most leaf nodes with a value of 3), and
the tree with only one node (in this case, r11).

The datasets processing algorithm designed in this section. We process the user’s
access timestamps data to obtain access habits and temporal features, and the user’s
visit site page address to obtain user spatial features from raw log.

3.2.5 Raw Log Labeling

Prior to extracting the user’s site visitation patterns and temporal-spatial behaviors
within a user session, it is necessary to determine which user-agents in the HTTP
request URLs belong to crawlers after segmenting the user sessions. To accomplish
this, the raw log data can be analyzed to ascertain if resource requests are made to
’/robots.txt.’ If requests are made to the ’/robots.txt’ resource, the user-agent under
that IP does not need labeling, and the IP can be classified as a crawler IP. This is
because ’/robots.txt’ is a hidden web page that normal users cannot find and request.

The COUNTER [7] and BROWSCAP [3] projects provide user-agent labels and
classify log datasets as either human user or crawler user-agents. Three scenarios can
occur when labeling using both projects: 1) both label as crawler, 2) only one labels as
crawler, or 3) BROWSCAP labels as DEFAULT BROWSER. If either project labels
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an agent as a crawler, we categorize it as a crawler user-agent. However, if COUNTER
does not label it as a crawler but BROWSCAP labels it DEFAULT BROWSER, man-
ual verification is required. This involves combining experience and internet searches to
determine the user-agent source and confirm if it is a crawler. Finally, the labeled user-
agent information is compiled into a dictionary table indicating whether the original
log data belongs to a crawler or human user.

Algorithm 1 Access path tree drawing algorithm

Input: rsl, rfl
Output: vlt, rsc
1: ASSERT length(rsl) == length(rfl) AND rlc = copy(rfl) AND rsc = copy(rsl)

AND vlt = {} AND rlen = length(rsl) AND si = 0
2: while si < rlen AND length(rlc) > 0 do
3: rrfl = []
4: rfia = []
5: rrl = []
6: item = str(rsl[si])
7: for i = TO length(rlc)-1 do
8: referer = rlc[i]
9: if item ̸= ’/’ AND item IN referer then

10: rrfl.append(referer)
11: rfia.append(i)
12: rrl.append(rsc[i])
13: end if
14: end for
15: next source = []
16: for ri IN rfia do
17: next source.append(rsc[ri])
18: end for
19: for referrer item, resource item IN zip(rrfl, rrl) do
20: rlc.remove(referrer item)
21: rsc.remove(resource item)
22: end for
23: if length(rlc) > 0 then
24: vlt[rsl[si]] = next source
25: end if
26: si = si + 1
27: end while
28: return vlt, rsc
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3.3 Detection Model Design

From Fig. 2, following the data processing described in Section 3.2, we obtained the
time series of user site visits by session, denoted as session = {la, lb, lc, ..., ls}. Specifi-
cally, this processing allowed us to derive the time series of user site visits, denoted as
ts = {du1, du2, ..., du180}, meeting the requirements for model training. Additionally,
we extracted user request features, user behavior habits, and access space features,
represented as shf = {x1, x2, x3, ..., x26}. To obtain the user’s temporal behavior fea-
tures, it was necessary to train the time series of user page dwell times ts through a
temporal model. The model design is as follows: The Gated Recurrent Unit (GRU)
addresses defects of traditional Recurrent Neural Networks (RNNs) [39] via gating
mechanisms. The GRU introduces input, output, forgetting, and memory cell gates.
These gates determine the importance of data and whether it should be retained or
discarded, ensuring that key information is propagated. The design principles for each
gating unit are as follows.

Rt = θ(XtWxr +Ht−1Whr + br) (1)

Zt = θ(XtWxz +Ht−1Whz + bz) (2)

The weight parametersWxr andWxz, both belonging to Rd×h, are used in conjunc-
tion with the bias parameters br and bz (both belonging to R1×h) in the computation
of the reset and update gates, respectively, as shown in Eq.1-2. The broadcast mecha-
nism is triggered during summation, and the sigmoid function is used as the activation
function to ensure that the output values fall within the interval (0, 1). Subsequently,
the reset gate Rt is incorporated with the conventional hidden state update mechanism
to obtain the candidate hidden state H̃t ∈ Rn×h at time step t.

H̃t = tanh(XtWxh+ (Rt ⊙Ht−1)Whh + bh (3)

The weight parameters Wxh ∈ Rd×h and Whh ∈ Rh×h are used in conjunction
with the bias item bh ∈ R1×h, while the Hadamard product operator ⊙ is used in
Eq.3. The non-linear activation function used in the candidate hidden state, tanh,
ensures that its value lies within the interval (−1, 1). However, when training the
time series of a user’s resident pages, the GRU model tends to overfit when faced
with lengthy sequence features and insufficient samples. To avoid over-fitting due to
insufficient samples during the training process, a temporary retreat method is added
to the model prior to initialization. Additive attention, which was introduced in [34],
is a self-attention mechanism that is believed to be important in the task of using
time series detection models. According to the authors, all hidden states are essential
but not equally important, and self-attention is required to dynamically adjust the
significance of different hidden states.

W = tanh(WqQ+WkK) (4)

score =
∑

softmax(WwW )V (5)
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In Eq.4 and Eq.5, the query of the key is calculated in a unified dimension so that
they are added in the same dimensional space, and the resulting value is subjected to
the tanh activation function. The softmax[15] operation is then performed to multiply
the resulting weights with the values.

Using a time series model, we transformed the time series ts = {du1, du2, ..., du180}
into time features tf = {x1, x2, x3, ..., x16}, and combined it with shf =
{x1, x2, x3, ..., x26} to form features = {x1, x2, x3, ..., x42}. Given that the time
series of user activity on a given page may differ in length, the incorporation of
an additive attention mechanism is necessary to address the issue of variable-length
input sequences. Specifically, this mechanism enables the transformation of the input
time series into a fixed-size vector, which can then be combined with the user’s
habits and spatial access features. The resulting concatenated features features =
{x1, x2, x3, ..., x42} are trained using a whitening residual network to detect effectively
whether the feature is a normal user or a crawler.

ResLayer(x) = Dropout(BN(x)) (6)

ICAi = ReLU(ResLayer(x)) (7)

xi+1 = Dropout(ICAi) + LayerOuti (8)

Eq. 6-8 demonstrate that the deep whitening residual network only requires the
combination of three operations, namely batch normalization (BN), dropout, and
addition, on top of a multilayer perceptron. Specifically, the addition of dropout after
each BN layer and the subsequent addition of the value after dropout to the input
after ReLU activation are performed. The whitening residual network used for noise
reduction eliminates data redundancy, while the ’residual error’, which is similar to
ensemble learning, enhances the model’s performance.

Independent Component Analysis (ICA) originated from the ’cocktail party’ prob-
lem, which refers to the challenging task of isolating individual speech signals from a
noisy mixture of multiple speakers and background music in a cocktail party setting.
The human ear is capable of accurately and precisely separating and processing each
speaker’s voice, despite the overlapping and interfering sounds. ICA is a data-driven
signal processing method developed from blind source separation technology, and it
is an analysis method based on high-order statistical properties. It employs statistical
principles to separate data or signals into linear combinations of statistically inde-
pendent non-Gaussian signal sources through linear transformation, as described in
[17].

Prior to ICA whitening, preprocessing is necessary to standardize the input data. In
traditional usage, ICA whitening involves significant computational overheads. How-
ever, deep learning frameworks incorporate several optimized operations, such as batch
normalization (BN) and dropout, which require minimal computations. BN ensures
that the input variables have zero mean and unit variance, which is equivalent to the
standardization process prior to whitening, as described in [14]. Furthermore, Dropout
randomly deactivates some neurons with a certain probability, as reported in [32].
Chen [4] demonstrated that BN and Dropout can approximate the effect of ICA.
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Table 2 Crawler Detection Features

Type Attribute Name Type Attribute Name

Request Features

1.average time
2.standard deviation
3.total duration
4. DATA
5-9. request resource rate
10-13. request method rate
14 - 17. response code rate

Habits,
Temporal Features

18. weekend day rate
19. deep night rate
20. resttime rate
21. worktime rate
22. user time series
23.width max rate
24.consecutive size
25.single flow rate

Table 3 Datasets for Crawler Detection

Dataset Total Number Crawlers User-Agent

AUTH Log[18] 4,060,400 411,946 3467
NPCASSOC Log[25] 482,055 80,839 9702

3.4 Federated Deep Learning Training

The detection server holding user access data data = { l1, l2, l3, ... , ln} uses local
data for training. We denote each server holding user data as Ci, i ∈ [1,m], where m
represents the number of servers. The different detection servers hold local data sets
represented by D = {d1, d2, ... , dm }. Thus, the detection server Ci only sends its
own model weight parameters gi to the central training server for aggregation.

First, after training with local data, the detection server node Ci, i ∈ [1,m] obtains
the weight parameters gi, which are then sent to the central training server. The
central training server calculates the global parameter Gc.

Gc =
1

m

m∑
i=1

gi (9)

Then, the central training server calculates the model weight parameter g′i for
node Ci for the next round of training using the following formula, and sends the
updated weight parameter g′i to the detection server node Ci. The detection server
node Ci updates its local model weight parameters using the updated parameter g′i.

g′i = W c
i Gc +Wigi (10)

Where WC
i is the global parameter weight and Wi is the local parameter weight.

Repeat the above steps until the loss function converges or the set iteration train-
ing period is reached, then stop training and save the latest detection model weight
parameters.
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4 EXPERIMENTAL RESULTS AND ANALYSIS

4.1 Datasets

In order to assess the efficacy of our proposed crawler detection model, we conducted
experiments on two distinct categories of datasets. The features utilized in these exper-
iments are not contingent upon the user’s private data, are legally permissible, and
are impervious to tampering or forgery, as elaborated in Section 3.2. Table 2 exhibits
the features obtained through the processing delineated in Section 3.2 of this article,
and the foundation of these fields is generated from the server.

Table 3 presents a comprehensive overview of the datasets employed in this study.
The first dataset used comprises the search engine user access data of the Library and
Information Center of Aristotle University of Thessaloniki, Greece [18]. The server
logs encompass the entire duration of February 28 to March 31, 2018, and comprise
4,060,400 HTTP requests and 3467 user-agents, with an average of 130,980 requests
per day. Out of these requests, 411,946 were generated by crawlers, while the remaining
3,648,454 were regarded as normal human access records. The search engine enables
users to peruse the availability of books and other paper-based works, as well as
facilitating the search of digitized scholarly articles or materials.

The second dataset employed in this study to validate the proposed model is the
access logs of the website of the American National Philosophical Counseling Associ-
ation [25]. This dataset comprises 482,055 HTTP requests, out of which 80,839 were
generated by crawlers, and the remaining 401,216 were human access records. The
dataset also encompasses 9702 user-agents. The network data traffic in this dataset
differs considerably from that of the first dataset utilized in this study, which enables
a more robust assessment of the universality and accuracy of the crawler detection
model.

From Table 3, it can be observed that the number of samples labeled as crawlers
in both datasets is significantly lower compared to those of normal accesses. Training
models directly with this imbalanced proportion could lead to a bias in the model,
resulting in a distortion of the model’s outcomes. To prevent this situation, in the
AUTH Log dataset, we selected 411,946 crawler data samples. In the subsequent exper-
iments, we experimented with training at ratios of 1:1, 1:1.5, and 1:2 to balance the
data. A similar approach for data balancing was also employed with the NPCASSOC
Log dataset.

The Table 2 in Section 3.2 shows the feature vector with 25 features obtained
by the data processing algorithm. Feature 22, user time series, represents the user’s
access time series ts, and is processed by a time model to obtain temporal features tf .
Features 5-9 represent resource request proportions, 10-13 represent request method
proportions, and 14-17 represent response proportions in a session. Two additional
features, session count and repeated request count, are not listed in the Table 2. These
27 features were obtained through the data processing algorithm in Section 3.2.
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Table 4 Hyperparameter Metrics

detail value

Round Number 150
Client Number 100
Number of clients selected for a round 10
Local clients batch size 128
Local clients epoch 5
Learning rate 0.015
Learning rate scheduler 0.95
Optimization function Adam
Loss function Cross Entropy Loss
dropout 0.3

4.2 Experiment Setup

The simulations were performed using the Ubuntu/Linux 18.04 operating system. The
crawler detection model was implemented with PyTorch 1.13 deep learning framework
API in Python 3.10 to construct a deep neural network. Initial model development
and experiments were executed on an Nvidia RTX 3060Ti GPU, leveraging a 2.9GHz
8-core Intel Core i7 10700F CPU and 32GB RAM. Each model was trained on the
GPU utilizing the Adam optimizer for 150 rounds of federated learning, with 10 local
training epochs per client per round. The model learning rate was set to 0.015, decaying
by 0.95 each round. Details of hyperparameter settings during training are provided
in Table 4.

A 4-layer fusion whitening residual network multi-layer perceptron (MLP) was
used, with 42 input layer neurons and ReLU activation for the hidden layers. The out-
put layer also used ReLU activation, generating two outputs to enable loss calculation
via array subscript and label. The Adam optimizer and binary cross-entropy loss were
utilized.

To evaluate model generalizability, training was conducted on two distinct datasets.
As shown in Table 5, metrics obtained from separate training on the two datasets
showed relatively minor differences, confirming the model can effectively detect
crawlers across environments.

4.3 Evaluation Metrics

To evaluate the performance of our models, we use terms such as True Positive
(TP), True Negative (TN), False Positive (FP), and False Negative (FN). We employ
precision, recall, and F1 score.

Precision measures the proportion of correctly predicted positive samples to all
samples predicted as positive.

Precision(P ) =
TP

TP + FP
(11)
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Table 5 Evaluation Performance on Two
Datasets

Datasets F1 Precision

AUTH Log[18] 0.9228 0.9317
NPCASSOC Log[25] 0.9099 0.9174

Similarly, recall is the proportion of correctly predicted positive samples to all
actual positive samples.

Recall(R) =
TP

TP + FN
(12)

The F1 score is a harmonic mean of precision and recall.

F1score = 2 · P ·R
P +R

(13)

Since precision and recall affect and constrain each other, we use the F1 score to
balance these estimates and evaluate the model’s overall performance with a single
value.

4.4 Performance Comparison Between Federated and
Centralized Model

In the field of contemporary network services, the immense volume of user traffic
compels service providers to deploy numerous servers to ensure service reliability and
enhance the user experience. Each server oriented towards user services accumulates
independent user activity data, which encompasses a wealth of user privacy informa-
tion. Presently, the training of crawlers’ detection models predominantly relies on a
centralized server training approach, where user access data collected by servers is
transmitted to a central server for processing and training.

Under this centralized training architecture, the communication cost in terms of
network bandwidth is primarily determined by the data traffic volume incurred when
other servers upload data to the central training server. As depicted in Fig. 1, we eval-
uate these communication costs by comparing the volume of data exchanged between
the servers and the central server.

As shown in Fig. 5A, the communication cost during centralized training is directly
proportional to the size of the dataset maintained by the detection servers. If the
dataset is substantial, it will consume a significant portion of network bandwidth
resources, potentially encroaching upon the bandwidth originally allocated for user
services. Moreover, frequent data interactions between the central training server and
detection servers may pose a risk of sensitive data leakage.

In contrast, the training approach of distributed federated learning is not con-
strained by the size of the dataset, as it involves only the uploading of model weights,
effectively avoiding the issue of user privacy leakage. In our research, we define the
upload cost for a single round of federated training as the sum of the total size of all
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Fig. 5 Experiments on the communication cost of training for federated learning and decisive
weighted fields of the dataset.

local models plus the size of the dataset features that need to be uploaded. Corre-
spondingly, the download cost is set as the cumulative size of all global models received
by the detection servers.

4.5 Comparisons With The State of The Art

In the initial phase of our empirical investigation, we endeavored to corroborate the
assertions posited by Lagopoulos et al. [18], specifically regarding the significance of
the UNASSIGNED feature within the cited field. This feature, due to its suscepti-
bility to manipulation by crawler entities, may ostensibly lack diagnostic value. The
empirical evidence, as reflected by the recall metrics delineated in the correspond-
ing table, intimates that the exclusion of the UNASSIGNED feature precipitates
a diminution in the model’s recall capability. Conversely, its integration engenders a
conspicuous enhancement across all evaluative metrics. In light of the comparative
analysis undertaken, we submit that the UNASSIGNED attribute is both pivotal
and susceptible to falsification, as depicted in Fig. 5B. Consequently, it is our recom-
mendation that this attribute be omitted from the formulation of the actual detection
model, predicated on the premise that reliance on features that are readily susceptible
to counterfeit by sophisticated crawlers can vitiate the model’s ability to discern their
activity, thereby precipitating a precipitous erosion in model performance. Table 6 fur-
nishes a comprehensive performance comparison with contemporary state-of-the-art
models.

Subsequent to this, we meticulously scrutinized and juxtaposed the implementa-
tion methodology delineated in the study conducted by Xia et al. [37], which utilizes
word vector encoding to represent temporal and user privacy data, including geo-
graphic coordinates and temporal stamps. However, given the inherent nature of
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Table 6 Performance Comparison with State-of-the-Art Models

Model F1 Precision Privacy Protection Emerging
Detection

WC3D[12] 0.9028 0.8788 No Yes

TMSCN[20] - - No Yes

Long-Tail[28] - - No No

PathMarker[36] 0.918 - No No

AANet[37] 0.5115 - No Yes

Content-aware WD[18] 0.9593 - No No

Proposed TS-Finder 0.9228 0.9317 Yes Yes

temporal stamps as continuous and ever-evolving independent variables, the resul-
tant embedding model is potentially unwieldy, challenging both in computation and
training. For web services intent on deploying detection algorithms within production
milieus, sustaining such a training regimen may be impracticable, especially when jux-
taposed against the backdrop of stringent privacy regulations governing the analytical
utilization of user data.

In our final comparative analysis, we scrutinized the methodologies employed by
Ro et al. [28]. The insights gleaned from our study cast doubt on the sufficiency of
the feature data presented in their research for the efficacious identification of crawler
activities. The said study relies predominantly on a time series detection approach,
as catalogued in the table pertaining to the Temporal Model. When this singular
method was integrated into our multi-modular assessment framework, the F1 score was
recorded at a modest 0.7735, underscoring the need for a more robust and multifaceted
feature set to enhance detection fidelity.

4.6 Ablation Study of Modules

To scrutinize the potential redundancy within the constituent modules of the pro-
posed model, a series of ablation studies were meticulously executed. The quantitative
results derived from these investigations are systematically tabulated in Table 7. More
precisely, the Temporal Model, as illustrated in Fig. 2, is meticulously calibrated to
distill temporal features exclusively from the input comprising the user’s chronological
access data. These features are subsequently harnessed as determinants for decision-
making subsequent to a spatial transformation process. Conversely, the MLP module,
which integrates a suite of whitening residual networks and a sophisticated multilayer
perceptron architecture, is singularly employed in this experimental context to assimi-
late and process the intricate patterns of user behavior and associated spatial features
for the purpose of model training.

The empirical outcomes corresponding to these experiments are encapsulated in
Table 7. In a distinct experimental configuration, the Temporal Model is operational-
ized to isolate temporal features from the user visitation temporal sequence, and
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Table 7 Ablation Study of Modules on Detection Crawlers Model

Modules F1 Recall Precision AUC

DWRN MLP 0.8861 0.8647 0.9084 0.9179

Temporal Model 0.7735 0.7024 0.8606 0.8320

DWRN MLP +
Temporal Model

0.9228 0.9141 0.9317 0.9457

Table 8 Exact Experimental Metrics for Different
Temporal Models on Detection Crawlers Model

Modules F1 Recall Precision AUC

LSTM [13] 0.9099 0.9026 0.9174 0.9377
Bi-LSTM[30] 0.9017 0.8857 0.9183 0.9296
RNN 0.8974 0.8780 0.9177 0.9258
GRU 0.9228 0.9141 0.9317 0.9457

these distilled features are employed as the foundational elements for model training.
In this instance, the DWRN MLP module is deliberately excluded from the pro-
cess, and the feature vector space is directly transmuted into a vector conducive for
crawler detection. The empirical evidence garnered from these experiments unequivo-
cally demonstrates that both user habituation patterns and spatio-temporal behavioral
features are integral and salient attributes that substantially enhance the efficacy of
crawler detection mechanisms. It is worth noting that the exclusion of either feature
module precipitates a tangible decrement in the precision of the crawler detection
accuracy.

4.7 Comparisons Between Different Models

In this investigation, we have elected to juxtapose the extant temporal model with
frequently employed time series models. To achieve this objective, we have chosen
an array of temporal models for comparative analysis. The comparative assessment
reveals that the performance discrepancies among the selected temporal models are
minimal. Nevertheless, the GRU [9] model demonstrates marginally superior training
effectiveness relative to other models, as corroborated by the precise experimental data
indicators delineated in Table 8. Consequently, we have incorporated the GRU model
in the proposed model design and in the appraisal of multiple datasets.

4.8 Model Stability Performance

Owing to the opaque nature of deep learning neural network models, it is not uncom-
mon for these models to exhibit disparate performance when executed on different
machines. In order to mitigate this issue, we have taken the necessary steps to validate
our model on multiple machines with different GPUs, thereby enhancing its robust-
ness. To assess the stability of our design model across diverse GPU servers available
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in the market, and as depicted in Fig. 6, we have obtained training metrics for the
model on A100, RTX 3090, RTX 3060Ti, and GTX 1650 NVIDIA GPU servers.

Based on the results presented in Fig. 6A, it can be inferred that the time spent
on a standard GTX 1650 GPU was the highest among all tested GPUs. Conversely,
as depicted in Fig. 6B, the training metrics for various high-performance GPUs
showed minimal differences. Notably, the Recall, and Precision metrics for the detec-
tion models exhibit only slight variations across different performance GPU servers.
This observation suggests that the model presented in this paper delivers comparable
performance when trained on both low-cost and high-performance GPU servers.

5 CONCLUSION

This paper introduces a state-of-the-art model for crawler detection, TS-Finder, which
leverages users’ access patterns and spatial-temporal characteristics of visited sites.
By extracting these features from log timestamps and addresses that cannot be falsi-
fied or tampered with, this approach does not rely on private user data. Instead, we
construct user access path trees based on relative access addresses and visit times. We
then employ a time series model coupled with an attention mechanism to train and
extract user access behaviors, alongside a whitening residual network to learn pat-
terns in user habits and spatial-temporal behavior features - both critical for effective
crawler detection. To further enhance our approach’s efficacy, we implement feder-
ated distributed learning to train our models. This not only mitigates excessive model
bandwidth usage caused by exchanging large training data quantities between servers,
but also ensures private data leakage is not a concern.

An intended direction for future work is addressing the scarcity of labeled data in
this domain. The current model has a strong dependence on labeled datasets, which
can be limiting in real-world scenarios. To overcome this constraint, we plan to explore
generative adversarial networks and game theory to learn the distributions of positive
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and negative data from existing datasets. This will help reduce the problem of missing
data for detection models and enable the development of more robust and accurate
crawler detection.
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