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Abstract—The 3rd Generation Partnership Project (3GPP) has
introduced New Radio Vehicle-to-Everything (NR-V2X) as an
evolution of Cellular V2X (C-V2X) to satisfy the increasingly
stringent communication requirements of emerging V2X appli-
cations. In NR-V2X Mode 2, vehicles autonomously perform
decentralized spectrum resource allocation via the Sensing-Based
Semi-Persistent Scheduling (SPS) algorithm. Nevertheless, the
performance of SPS significantly degrades under scenarios with
high vehicle density and aperiodic traffic patterns, which hinders
the system’s ability to meet Quality of Service (QoS) demands.
To address these challenges, this study proposes MMATD3-SPS,
an enhanced resource allocation algorithm that integrates a
Multi-Agent Twin Delayed Deep Deterministic Policy Gradient
(MMATD3) framework into the conventional SPS scheme. By
leveraging channel state information and application-layer met-
rics, and applying a reward decomposition strategy, the algorithm
optimizes the resource selection process. Experimental results
demonstrate that MMATD3-SPS improves the packet reception
rate by approximately 10% in high-density traffic environments.
Moreover, it ensures that 80% of data packets are updated within
100 milliseconds under aperiodic traffic conditions. These results
highlight the proposed algorithm’s robustness and scalability, un-
derscoring its potential for deployment in dynamic and complex
vehicular communication scenarios.

Index Terms—NR-V2X Mode 2, spectrum resource allocation,
semi-persistent scheduling, multi-agent reinforcement learning

I. INTRODUCTION

The advancement of intelligent transportation systems (ITS)
plays a pivotal role in enabling sophisticated vehicular appli-
cations, including autonomous driving and cooperative per-
ception [1]. These applications demand ultra-reliable and low-
latency communication to ensure safety, efficiency, and seam-
less interaction between vehicles and their surrounding envi-
ronment. To meet these stringent communication requirements,
New Radio Vehicle-to-Everything (NR-V2X), introduced in
3GPP Release 16, represents a significant enhancement over
Cellular Vehicle-to-Everything (C-V2X). NR-V2X is explicitly
designed to address the limitations of its predecessors while
providing robust support for advanced V2X services [2].
Notably, NR-V2X Mode 2 enables vehicles to autonomously
select spectrum resources decentralized using the Sensing-
Based Semi-Persistent Scheduling (SPS) algorithm. While
SPS performs effectively in periodic traffic scenarios, such as
routine vehicle position updates, its performance deteriorates

in high vehicle density environments and under aperiodic
traffic conditions [3–5]. Aperiodic traffic, often critical for
autonomous driving scenarios like emergency braking and
cooperative perception, involves unpredictable transmission
intervals. These dynamics exacerbate the risks of packet colli-
sions, transmission delays, and inefficient spectrum utilization,
thereby posing significant challenges to maintaining the Qual-
ity of Service (QoS) required for these advanced applications.

The SPS algorithm primarily employs periodic resource
reservation and resource filtering mechanisms to facilitate
spectrum allocation. Despite its inherent simplicity, the algo-
rithm’s limitations in dynamic vehicular environments have
motivated various enhancements to address its shortcomings.
For example, Dayal et al. [6] proposed an adaptive SPS frame-
work that adjusts resource reservation intervals based on traffic
conditions, effectively reducing interference and extending
the communication range. Similarly, Gu et al. [5] optimized
SPS parameters, such as resource reservation intervals, using
collision probability and delay models, resulting in improved
channel congestion management and QoS. Moreover, Abbas
et al. [7] developed a two-stage resource selection strategy
that integrates traffic density and channel state information,
achieving lower latency and higher throughput. However,
conventional SPS algorithms often rely on random resource
selection from a pool of detected idle resources, which can
lead to frequent collisions in high vehicle density vehicular
scenarios.

Recent advances in reinforcement learning (RL) have shown
strong potential for V2X resource allocation. Parvini et al. [8]
introduced a resource allocation algorithm based on the Twin
Delayed Deep Deterministic Policy Gradient (TD3) technique,
which outperformed centralized and federated learning-based
strategies in vehicular platoon scenarios. Hegde et al. [9] intro-
duced an actor-critic algorithm for aperiodic traffic, achieving
better performance than SPS across varying traffic conditions.
Similarly, Lee et al. [10] developed a decentralized multi-
agent RL framework tailored to heterogeneous traffic, deliv-
ering near-optimal results under both light and heavy loads.
These studies highlight RL’s effectiveness in addressing the
increasing complexity and diverse demands of V2X systems.

To address the challenges of frequent resource collisions,



reduced communication reliability under high vehicle density,
and inefficiencies in managing aperiodic traffic conditions, we
propose an enhanced spectrum resource allocation algorithm
based on the Modified Multi-Agent Twin Delayed Deep De-
terministic Policy Gradient (MMATD3), termed MMATD3-
SPS. The main contributions of this work are summarized as
follows:

• MMATD3-SPS introduces a novel reward decomposition
mechanism and a dual-task agent framework to mitigate
the inefficiencies of the random resource selection process
inherent in the SPS algorithm. This approach translates
QoS requirements, such as transmission reliability and
low latency, into sub-task rewards, empowering agents to
make more precise and effective decisions.

• By leveraging channel state information and application-
layer metrics, MMATD3-SPS optimizes dynamic re-
source selection, making it suitable for both periodic
and aperiodic traffic scenarios. A centralized agent is
employed to expedite training convergence, facilitating
efficient computation and reliable communication.

• Simulation results show that MMATD3-SPS outperforms
traditional SPS, improving packet reception rates by ap-
proximately 10% in high-density scenarios and ensuring
80% of aperiodic updates are completed within 100 ms,
demonstrating superior scalability and robustness.

The remainder of this paper is organized as follows: Section
II details the system model, while Section III outlines the prob-
lem description. Section IV presents the proposed MMATD3-
SPS algorithm in detail. Section V, the performance of the
proposed resource allocation algorithm is evaluated through
simulation results. Finally, VI concludes the paper with a
summary of the findings.

II. SYSTEM MODEL

NR-V2X utilizes Orthogonal Frequency Division Multiplex-
ing (OFDM), a technology that converts selected channels in
the frequency domain into parallel flat channels across multi-
ple subcarriers. Assuming that channel fading is approximately
uniform within a subchannel and independent across different
subchannels, several contiguous subcarriers are grouped into
a spectral subchannel. In highway scenarios without base
station coverage, vehicles communicate through the sidelink
PC5 interface for vehicle-to-vehicle (V2V) communication.
In the absence of resource coordination by a central node,
vehicles autonomously select spectrum resources using SPS.
These vehicles periodically broadcast basic safety messages
or transmit intelligent sensing information on an aperiodic
basis. The system model is shown in Fig. 2 below. Let
the set of vehicles be denoted as I = {1, . . . , I}. At time
slot t, the set of vehicles within the communication range
of vehicle i is denoted as J

(t)
i = {1, . . . , J (t)

i }, while the
set of interfering vehicles for vehicle i is represented as
K(t)
i = {1, . . . ,K(t)

i }. The set of available spectrum resources
is defined as R = {1, . . . , R}. To model resource selection, let
c
(t)
i,r ∈ {0, 1} indicate whether vehicle i ∈ I selects spectrum
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Fig. 1: System model in highway scenarios.

resource r ∈ R for message transmission at time slot t. Each
vehicle is constrained to select at most one spectrum resource
in each time slot:∑

r∈R
c
(t)
i,r ≤ 1, ∀i ∈ I, ∀t (1)

The transmission gain between vehicles dynamically
changes with variations in vehicle positions and transmission
tasks. However, given the relatively short duration of a time
slot, it is assumed that the transmission gain remains approx-
imately constant within the same time slot. During time slot
t, the transmission gain of vehicle j monitoring subchannel
resource r is denoted as G(t)

j,r, which is expressed as follows:

G
(t)
j,r = α

(t)
j h

(t)
j,r (2)

where α
(t)
j and h

(t)
j,r represent the large-scale fading effect

caused by path loss and shadowing, and the small-scale fading
effect caused by multipath propagation, respectively.

When vehicle i utilizes spectrum resource r for broadcast
transmission, the interference experienced during V2V direct
communication between vehicle i and vehicle j in time slot t
is defined as:

I
(t)
i→j,r =

∑
k∈K(t)

i

Pk,rG
(t)
k→j,r (3)

where Pk,r represents the signal transmission power of vehicle
k when selecting spectrum resource r for transmission. If spec-
trum resource r is not selected by vehicle k, then Pk,r = 0.

The signal-to-noise and interference ratio (SINR) for the
communication link between vehicle i and vehicle j using
spectrum resource r at time slot t is expressed as:

SINR
(t)
i,j,r =

c
(t)
i,rPi,rG

(t)
i→j,r

Pn + I
(t)
i→j,r

(4)

where Pn represents the noise power.
According to Shannon’s theorem [11], the transmission

channel capacity for this communication link is given by:

C
(t)
i,j,r = B log2

(
1 + SINR

(t)
i,j,r

)
(5)

where B represents the bandwidth occupied by a single fre-
quency resource, and C(t)

i,j,r denotes the theoretical maximum
data transmission rate between vehicle i and vehicle j using
resource r at time slot t.



III. PROBLEM FORMULATION

Advanced V2X applications, such as cooperative driving
and autonomous traffic management, demand strict adherence
to QoS constraints to ensure reliable and efficient commu-
nication. These applications involve the exchange of critical
information, such as cooperative perception data, vehicle tra-
jectories, and control instructions, necessitating high reliability
and low latency for V2X transmissions. The mathematical
representations of these QoS constraints are as follows:

A. QoS Constraints

1) Reliability Constraint: In advanced V2X applications,
communication reliability is crucial to ensure accurate and
timely sharing of critical information. An outage event occurs
when the SINR falls below a minimum threshold SINRth,
resulting in packet loss and degraded system performance.
To meet reliability requirements, the outage probability poutage
must remain within an acceptable limit [12]. The reliability
constraint for V2X transmissions between transmitter i and
receiver j on resource r is expressed as:

poutage = 1− e
− SINRth

SINR
(t)
i,j,r (6)

2) Latency Constraint: Low latency is essential for time-
sensitive V2X applications, such as emergency braking or real-
time traffic updates. Since V2X typically employs distributed
resource selection schemes like SPS, central scheduling delays
are eliminated, and only transmission latency is considered.
The latency constraint can be formulated as:

tdelay =
Z

C
(t)
i,j,r

=
Z

B log2

(
1 + SINR

(t)
i,j,r

) (7)

where Z represents the packet size of the V2X message.

B. Optimization Problem

Let x(t)i = r
(t)
i denote the decision variable representing

the resource selection by vehicle i in time slot t, where r(t)i
indicates the frequency resource chosen by the vehicle. We
propose a novel multi-objective optimization problem aimed
at enhancing the reliability and latency performance of vehic-
ular applications that rely on V2V links. The mathematical
formulation of the optimization problem is as follows:

min
x
(t)
i

{
1− p

(t)
outage,i, t

(t)
delay,i

}
s.t.

∑
r∈R

c
(t)
i,r ≤ 1, ∀i ∈ I, ∀t

(8)

where the objective function seeks to minimize the outage
probability and transmission latency while ensuring that each
vehicle selects exactly one spectrum resource in each trans-
mission time slot.

IV. MMATD3-SPS ALGORITHM

This section mainly introduces the modeling of multi-
agent environments and the enhanced SPS algorithm based
on MMATD3.

A. Modeling of Multi-Agent Environments

To solve the optimization problem defined in Equation (8),
we reformulate it as a Markov Decision Process (MDP) and
design RL elements, represented by ⟨S,A, P,R, γ⟩. Here, S
denotes the state space, A represents the action space, P is
the state transition model, R is the reward function, and γ is
the discount factor. Each agent aims to learn an optimal policy
π∗
i to maximize the cumulative reward over time. Given the

difficulty of obtaining state transition probabilities, we adopt
the model-free multi-agent RL algorithm MATD3 [13], which
learns the optimal policy through trial and error. MATD3 is
integrated into the SPS framework to dynamically optimize
spectrum resource allocation and improve vehicular network
performance.

1) State: The state space consists of perceived channel state
information and application-layer metrics. At time slot t, the
local state information observed by an agent i includes the
transmission gains {G(t)

j,r}j∈R, interference from other V2V
links {I(t)i,j,r}j∈K,r∈R, and application-layer metrics such as
the latency budget ζ(t)i for the current transmission. These
elements are represented as:

s
(t)
i =

{
{G(t)

j,r}j∈R, {I(t)i,j,r}j∈K,r∈R, ζ
(t)
i

}
(9)

2) Action: The action space corresponds to the decision
variable defined in Equation (8), specifically the spectrum
resource selected by vehicle i at time slot t, represented as:

a
(t)
i = r

(t)
i (10)

3) Reward: The reward function is critical for addressing
high-dimensional and complex task scenarios in reinforcement
learning. Associating the reward obtained from each action
with the expected objective enhances overall system perfor-
mance. For the multi-objective optimization problem proposed
in Equation (8), the optimization goals are decomposed into
two sub-tasks: stable transmission and timely transmission.
Therefore, the reward for vehicle i executing action a

(t)
i at

time slot t is defined as:

r
(t)
i = κ1p

(t)
outage,i︸ ︷︷ ︸

Reliability

−κ2t
(t)
delay,i︸ ︷︷ ︸

Latency

(11)

where κ1 and κ2 are weight coefficients for reliability and
latency, respectively. These weights align with the optimization
objectives in Equation (8). The first term rewards stable trans-
mission, while the second term penalizes latency violations.

To account for the overall performance of the vehicular
network, a global reward is introduced. This global reward is
designed for the centralized training and distributed execution
(CTDE) paradigm in multi-agent reinforcement learning and
is expressed as:

r(t)g = − 1

N

∑
j∈J

∑
r∈R

log
{
I
(t)
j,r

}
(12)

where I
(t)
j,r represents the interference power observed by

vehicle j on spectrum resource r, and N denotes the total



number of observed spectrum resources. The global reward is
utilized during centralized training to guide agents in selecting
spectrum resources with lower interference.

B. MMATD3-SPS algorithm framework and flow
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Fig. 2: MMATD3-SPS resource allocation algorithm frame-
work.

Multi-Agent Twin Delayed Deep Deterministic Policy Gra-
dient (MATD3) is a reinforcement learning algorithm tailored
for multi-agent continuous control problems. It extends TD3
to multi-agent scenarios, leveraging CTDE to enhance training
efficiency and policy stability. In vehicular spectrum resource
allocation, MATD3 optimizes independent policy and value
networks for each agent while enabling cooperation among
vehicles to improve overall network performance. As shown
in Fig. 2, the architecture includes a critic group and an actor
network for local agents, as well as a centralized critic for
global rewards. For agent j, the actor network parameters are
updated using policy gradients as follows:

∇ϕj
Jj = E

[
∇ϕj

πj (aj | sj)∇ajQj (sj , aj)
]
aj=πj(sj)

(13)

where Qj(sj , aj) represents the Q-value estimation by the
agent’s critic network.

The policy gradient of the local actor network, incorporating
the global critic network, is defined as follows:

∇ϕj
Jj =Es,a∼D

[
∇ϕj

πj (aj | sj)∇ajQ
g
ψ(s, a)

]
︸ ︷︷ ︸

Global Critic

+ Esj ,aj∼D
[
∇ϕj

πj (aj | sj)∇ajQj (sj , aj)
]︸ ︷︷ ︸

Local Critic
(14)

where Qgψ(s, a) represents the Q-value estimation by the
global critic network for the joint state-action pair. D denotes
the experience replay buffer, which stores interaction data with
the vehicular network environment for sampling and training.

Additionally, this study introduces a reward decomposition
mechanism based on the requirements for transmission relia-
bility and low latency. The local reward is divided into two

components: reliability reward and low-latency reward. The
decomposed rewards obtained by agent i at time slot t are
expressed as follows:

r
(t)
1,i = κ1p

(t)
outage,i (15)

where r
(t)
1,i represents the reward obtained for achieving re-

liable transmission. The reward for achieving low-latency
transmission is defined as:

r
(t)
2,i = r

(t)
i − r

(t)
1,i = −κ2t(t)delay,i (16)

Due to the additive relationship between local decomposed
rewards, Equation (14) can be equivalently expressed as:

∇ϕj
Jj = Es,a∼D

[
∇ϕj

πj (aj | sj)∇ajQ
g
ψ(s, a)

]
︸ ︷︷ ︸

Global Critic

+

M∑
k=1

Esj ,aj∼D
[
∇ϕj

πj (aj | sj)∇ajQj,k (sj , aj)
]︸ ︷︷ ︸

Decomposed Local Critic
(17)

where M represents the total number of transmission require-
ments with different properties such as stability and reliability.
The first term denotes the global reward evaluated by the
global critic network according to Equation (12), while the
second term represents the sum property rewards evaluated by
the local critic network based on Equations (15) and (16).

Unlike the update strategy for the actor network of local
agents, the update of the critic network for local agent j relies
on the temporal difference error for transmission property k.
The loss function is defined as:

L(θj,k) = Esj ,aj ,rj ,s′j
[(
Qθj,k(sj , aj)− yj,k

)2]
(18)

where the target yj,k is defined as:

yj,k = rk,j + γQθ′j,k
(
s′j , a

′
j

)
|a′j=π′

j(s′j)
(19)

Similarly, the loss function of the global critic network is
defined as follows. To solve problem of high bias estimation of
Q-value during the training of the critic network, the MATD3
algorithm adopts the dual critic network to solve the problem:

L(ψi) = Es,a,r,s′
[(
Qgψi

(s, a)− yg

)2
]

(20)

where the target yg is defined as:

yg = rg + γmini=1,2Q
g
ψ′

i
(s′, a′)|a′j=π′

j(s′j)
(21)

V. SIMULATION RESULTS AND ANALYSIS

In this section, we introduce the simulation environment
and parameters, including network topology, communication
model, and key settings. Then, we present the evaluation
metrics such as reliability and latency. Finally, we show the
simulation results with quantitative analysis and comparison
to baseline methods.



A. Simulation Setup

We utilized OpenCV2X [14] as the core framework for sim-
ulating NR-V2X Mode 2 communications. By extending Si-
muLTE [15], which supports LTE-V2X Mode 4 scenarios, the
Winner+B1 channel model and NR-V2X link-level datasets
[16] were integrated to enhance simulation accuracy. Since
OpenCV2X lacks built-in RL integration, Veins-Gym [17]
was adopted to bridge reinforcement learning algorithms with
vehicular spectrum allocation research. This framework seam-
lessly integrates with RL libraries such as Stable-Baselines3
[18], enabling efficient algorithm development. The proposed
MMATD3-SPS algorithm was trained and evaluated in the
3GPP highway scenario [19], which utilizes a wrap-around
design to ensure consistent vehicle density and realistic simu-
lation conditions. The detailed simulation parameters for com-
munication and reinforcement learning training are provided
in Tables I and II. The generation of aperiodic traffic follows
the equation:

tg = c+ r (22)

where tg represents the interval between packet generations, c
is a constant set to 50 ms, and r is an exponentially distributed
random variable with a mean equal to c.

TABLE I: Simulation Parameters

Parameter Value
Maximum Vehicle Speed 70 km/h
Vehicle Density {0.06, 0.12, 0.18} veh/m
Carrier Frequency 5.9 GHz
Channel Bandwidth 10 MHz
Number of Subchannels 3
Subchannel Size 16
Modulation and Coding Scheme (MCS) MCS 13
Packet Size 190 bytes
Traffic Type Periodic/Aperiodic
Message Transmission Frequency 20 Hz
Channel Model Winner+B1
Noise Gain 9 dB
Antenna Gain 3 dB
RSRP Threshold -128 dBm

TABLE II: Hyperparameters for Training

Parameter Value
Learning Rate (Actor) la 0.001
Learning Rate (Critic) lc 0.001
Number of Episodes Neps 500

Discount Factor γ 0.99
Soft Update Coefficient µ 0.1
Soft Update Frequency α 0.001

Batch Size b 256

B. Simulation result

1) Training process analysis: Fig. 3(a) illustrates the vari-
ation in the average reward during the training process of
the MMATD3-SPS algorithm, where MATD3-SPS refers to
MMATD3-SPS without the reward decomposition mechanism.
Overall, the MMATD3-SPS algorithm exhibits some fluctua-
tions in average reward due to its exploration-oriented strategy,
which seeks to uncover potential decision gains. After approx-
imately 30 training episodes, MMATD3-SPS achieves higher

average rewards compared to the SPS algorithm, whereas
MATD3-SPS requires around 120 episodes to reach compara-
ble performance. This improvement is attributed to the reward
decomposition mechanism of MMATD3-SPS, which enables
more accurate policy evaluation via subtask-specific Critic
networks. Beyond 400 training episodes, the average reward
of MMATD3-SPS stabilizes, outperforming both MATD3-SPS
and SPS in terms of final reward levels. Fig. 3(b) presents the
average reward evolution for the two tasks during the training
of MMATD3-SPS. Task 1 corresponds to reliability-oriented
objectives, while Task 2 focuses on delay-sensitive objec-
tives. Both tasks demonstrate good convergence performance.
The reliability-oriented task converges after approximately 80
episodes, benefiting from the inherent reliability provided by
the standard SPS resource reservation mechanism. In con-
trast, the delay-sensitive task requires around 400 episodes to
converge, as it faces challenges in effectively learning delay-
related information within relatively stable environments.

(a) Average reward per episode (b) Task reward per episode

Fig. 3: The training process of different resource selection
algorithms.

2) Performance of proposed algorithm: Fig. 4(a) and
Fig. 4(b) compare the reliability and latency performance
of the MMATD3-SPS algorithm with the SPS algorithm in
scenarios featuring periodic traffic. As shown in Fig. 4(a), the
packet reception rate (PRR) of MMATD3-SPS consistently
surpasses that of the SPS algorithm across a wide intermediate
distance range. Moreover, the PRR performance of MMATD3-
SPS demonstrates a progressively more significant advantage
over SPS as vehicle density increases. For instance, at a vehicle
density of 0.18 veh/m, MMATD3-SPS achieves approximately
a 10% improvement in PRR over SPS within the distance
range of 425 m to 675 m. Fig. 4(b) highlights the latency
performance advantage of MMATD3-SPS in terms of packet
inter-reception (PIR). A lower maximum PIR indicates the
system’s ability to respond more effectively to network dy-
namics, thereby enhancing communication efficiency. Across
varying vehicle densities, MMATD3-SPS consistently delivers
at least a 50 ms improvement in maximum PIR performance
compared to the SPS algorithm.

To evaluate the performance of MMATD3-SPS under aperi-
odic traffic conditions, additional simulations were conducted
using Dynamic Scheduling (DS) [20] and QMIX-SPS [21]
algorithms as benchmarks. The results in Fig. 5(a) demonstrate
that MMATD3-SPS achieves superior reliability compared to
resource allocation algorithms conforming to the NR-V2X



(a) PRR vs. distance (b) Max PIR vs. β

Fig. 4: The PRR and max PIR of SPS and MMATD3-SPS
under different vehicle densities.

standard. Furthermore, as shown in Fig. 5(b), MMATD3-SPS
outperforms the dynamically optimized QMIX-SPS algorithm
in PIR performance, overcoming the randomness inherent in
the SPS resource selection process. Specifically, 80% of pack-
ets are successfully updated within 100 ms, underscoring the
effectiveness of MMATD3-SPS in mitigating the limitations
of the SPS selection mechanism.

(a) PRR vs. distance (b) CDF of PIR

Fig. 5: Performance comparison under aperiodic traffic condi-
tions.

VI. CONCLUSION

This paper addresses resource allocation challenges in NR-
V2X Mode 2, where the SPS algorithm performs poorly under
high vehicle density and aperiodic traffic, failing to meet
QoS standards. We propose the MMATD3-SPS algorithm,
which integrates channel state information and application-
layer metrics to enhance resource selection. By incorporating
a reward decomposition mechanism, MMATD3-SPS translates
QoS requirements into actionable rewards, enabling efficient
decision-making. Simulation results show that MMATD3-
SPS improves resource allocation efficiency, outperforming
traditional SPS in packet reception rate and latency. The algo-
rithm’s adaptability to varying traffic conditions and scalability
highlight its potential for dynamic vehicular networks.

Future work will focus on extending the framework to
handle more complex traffic scenarios, optimizing SPS param-
eters, and improving its applicability in large-scale real-world
networks.
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