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Abstract—The Third Generation Partnership Project (3GPP)
has standardized cellular vehicle-to-everything (C-V2X) Mode
4 to facilitate direct communication between intelligent con-
nected vehicles. In Mode 4, vehicles autonomously reserve and
select wireless spectrum resources through sensing-based semi-
persistent scheduling (SPS). However, the half-duplex trans-
missions and hidden terminal problems in SPS could degrade
the quality of services (QoS), possibly making it hard to meet
the requirements for basic safety services. To support the SPS
algorithm’s performance in highly congested conditions, this
paper presents QMIX-SPS, an adaptive parameter optimization
methodology. It also proposes a new performance metric, the
signal-to-interference-plus-noise ratio (SINR) achievement rate,
as a means of evaluating communication network effectiveness.
We developed a multi-agent vehicular communication framework
in which parameters of the SPS, including transmission power,
resource reservation probabilities, resource reservation counter-
offset steps, and candidate resource ratios, are periodically
adjusted under the guidance of the QMIX reinforcement learning
algorithm. Our proposed resource allocation algorithm utilizes
the mechanism of value decomposition to solve the reward
allocation problem when competition and collaboration coexist
in a V2X environment. Simulation results show that QMIX-SPS
outperforms the baseline algorithm. Furthermore, the algorithm
has excellent stability flexibility, and compatibility with the SPS.

Index Terms—C-V2X Mode 4, spectrum resource allocation,
semi-persistent scheduling, multi-agent reinforcement learning

I. INTRODUCTION

The Internet of Vehicles (IoV) has become an essential com-
ponent in enhancing road traffic systems’ safety, efficiency, and
convenience due to the development of Intelligent Transport
Systems (ITS). In recent years, vehicle-to-everything (V2X)
communications have gained the interest of both business
and academics, emerging as a key component of vehicular
technology.

Two main technologies facilitate vehicle network communi-
cation: Cellular Vehicle-to-Everything (C-V2X) and Dedicated
Short-Range Communication (DSRC) [1]. While C-V2X was
introduced by the Third Generation Partnership Project (3GPP)
in its Release 14 [2], DSRC is based on the IEEE 802.11p
standard. Comparing C-V2X to DSRC, greater scalability,
higher Quality of Service (QoS), and a larger communication
coverage range are provided by utilizing LTE and 5G technol-
ogy. Mode 3 and Mode 4 are the two radio resource allocations
that C-V2X provides for vehicle-to-vehicle (V2V) direct com-
munication. Mode 4 enables autonomous resource selection

by vehicles via the PC5 interface, distributing radio resources
according to sensing-based semi-persistent scheduling (SPS).
Mode 3 entails centralized resource scheduling through the
base station’s UU interface. The paper will concentrate on the
study of the SPS for vehicle-to-vehicle (V2V) communication
within C-V2X Mode 4.

The performance of the V2X resource allocation algorithms
is extremely important for achieving reliable direct commu-
nication and broadcasting safety messages between adjacent
vehicles. In previous work [3–6], people have studied the
performance of the SPS algorithm through analytical models
and simulation models and found that appropriately adjust-
ing SPS parameters can provide better performance. Dayal
et al. [7] proposed an adaptive SPS scheme to adjust the
resource reservation interval under different vehicle traffic
scenarios. This reduces interference between adjacent vehicles
and increases the effective communication distance. Based
on the analytical model, Gu et al. [8] optimized parameters
such as the SPS resource reservation interval to reduce the
congestion level of the channel. Although these methods have
optimized SPS parameters to a certain extent, there are still
problems with half-duplex transmission and hidden terminals,
so some research efforts have turned to improving the SPS
process. Kim et al.[9] proposed a method based on intelligent
part sensing that enhances the sensing capability of SPS by
minimizing the number of blind decodes. Wang et al. [10]
proposed an in-platoon collaborative sensing method to solve
the hidden terminal problem in the platoon scenario.

With the introduction of more advanced V2X applications,
traditional optimization schemes cannot meet the diverse per-
formance requirements of resource allocation algorithms, and
some studies have shown great potential by introducing rein-
forcement learning-based resource allocation schemes through
Markov modeling. Liang et al. [11] innovatively introduced
a multi-intelligent resource allocation method to solve the
different QoS requirements of V2V and V2I links. Parvini
et al. [12] proposed a task reward decomposition mechanism
to further improve the performance of the resource allocation
algorithm based on deep reinforcement learning (DRL) in the
formation scenario.

Based on the research of related work, this paper proposes a
DRL-based SPS algorithm that integrates the value decomposi-
tion network called QMIX-SPS [13]. We provide a novel met-



ric called the Signal-to-Interference-plus-Noise Ratio (SINR)
achievement rate to carry out a comprehensive optimization
of the network performance.QMIX-SPS can guide vehicles
to select the parameters of SPS periodically to adapt to
the rapidly changing traffic conditions and network topology.
We use an architecture combining distributed execution and
centralized training to handle the value assignment problem
in a multi-agent environment. The main contributions of our
work can be summarized in three aspects:

• For V2V links to meet the reliability and timeliness
requirements necessary to provide essential security ser-
vices for the Internet of Vehicles (IoV), this work devel-
ops a utility index, or SINR achievement rate, based on
transmission delay and packet transmission interruption
rate. The utility index considers the impact of delay and
stability on service quality in addition to the probability
of successful transmission.

• This paper presents a novel attempt at simultaneously
optimizing SPS parameters through reinforcement learn-
ing techniques. In the case of intense channel competi-
tion, the establishment of effective communication and
cooperation between vehicles can successfully mitigate
resource conflicts and improve the overall communication
performance of the network.

• This paper is the initial study that investigates the compat-
ibility of C-V2X resource allocation. We fully considered
the impact of introducing QMIX-SPS in the SPS environ-
ment. The simulation results show that the QMIX-SPS
we proposed has almost no impact on the original SPS
environment and also improves the stability and reliability
of the overall network.

The subsequent sections of this paper are organized in the
following manner. Section II presents our system model. Sec-
tion III introduces the problem description. Section IV outlines
the proposed QMIX-SPS algorithm. Section V evaluates the
proposed resource allocation algorithm through simulation.
Finally, Section VI provides a summary of the paper.

II. SYSTEM MODEL

Orthogonal Frequency Division Multiplexing (OFDM) tech-
nology is used in the Internet of Vehicles. Its principle is to
convert selected channels in the frequency domain into parallel
flat channels on multiple subcarriers. Several consecutive
subcarriers are divided into a spectrum subchannel, assuming
that the channel fading is approximately the same within a
subchannel and is independent of different subchannels. The
available spectrum bandwidth of V2V direct communication is
w MHz, which is divided into k subchannels, and it is assumed
that different subchannels do not interfere with each other.
From the time domain, every 100 ms is a broadcast period.
Within the same broadcast period, each vehicle can only
reserve one resource block at the same time. The vehicle needs
to use the adaptive strategy π to select spectrum resources
from the spectrum resource pool to transmit periodic broadcast
messages to surrounding vehicles. The transmission power of

vehicle i in the tth period is P i
t , and the selected spectrum re-

source is rsit. The transmission gain between vehicles changes
dynamically as the vehicle moves. Since the single period time
is short, assuming the transmission gain is the same in a single
period, the transmission gain of vehicle i and vehicle j in the
tth period is:

gi,jt = PLi,j
t + SF (i ̸= j) (1)

PLi,j
t and SF are path loss and shadow fading respectively.

vehicle j when receiving the signal from vehicle i, the
interference from other vehicles is described as:

I
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t are the same,
otherwise it is 0. Then the description of SINR is:

γ
(j,i)
t =

P i
t g

(i,j)
t

σ2 + I
(j,i)
t

(3)

where the numerator term represents the effective received
power of vehicle j to vehicle i, and σ2 is the noise power.
According to Shannon’s second theorem, the transmission rate
of vehicle j receiving vehicle i is T

(j,i)
t , which is given by:

T
(j,i)
t =

w

k
log2(1 + γ

(j,i)
t ) (4)

III. PROBLEM FORMULATION

Various application services in C-V2X have distinct QoS
requirements. The V2V direct link is primarily responsible
for transmitting safety application messages, such as the
CAM information that the vehicle periodically broadcasts,
and contains the most important basic vehicle data, including
position, speed, direction, and other data. Such messages
have a great impact on the security of intelligent network-
connected vehicles. This link needs to ensure the stability and
timeliness of data packet transmission. We choose to use the
packet transmission interruption rate to measure the stability
of data packet delivery and the sending delay to measure the
timeliness.

Based on [11], it can be obtained that under the constraint
of the upper limit of transmission interruption probability po,
the SINR of data packet transmission needs to satisfy the
following formula:

γ
(j,i)
t ≥ γmin

ln
(

1
1−po

) (5)

where γm represents the SINR threshold transmission delay,
which is defined as follows:

Z

T
(j,i)
t

≤ tdmax (6)

In (6), Z represents the data packet size, and tdmax represents
the upper limit of the sending delay required by the security



application. Combining (5) and (6), we can simplify the
service quality requirements into constraints on SINR:

γ
(j,i)
t ≥ max

 γm

ln
(

1
1−po

) , 2 Z·k
tdmax·w − 1

 (7)

To maximize γ
((j,i)
t for a single vehicle, one can enhance the

transmission power P i
t . However, this will cause interference

with other vehicles that select the same spectrum resources,
causing the SINR of these vehicles to decrease. A strategy
that is better for some vehicles may not necessarily be better
overall. Therefore, the understanding of this problem should be
considered from a global perspective. This paper aims to make
as much data transmission as possible satisfy the constraints
of (7). We design the global SINR achievement rate as an
evaluation index to measure strategy performance:

PAS =
Na

Nt
(8)

where Na represents the number of packet transmissions
whose SINR satisfies the constraint condition of (7), and Nt

represents the total number of transmissions. This paper hopes
to maximize PAS by dynamically and adaptively adjusting
the parameters and transmit power of the SPS algorithm.
Therefore, we have the following formal description of this
problem:

max PAS

s.t.


0 ≤ H ≤ 1

0 ≤ F ≤ 1

C ∈ {0, 1, 2}
0 ≤ P ≤ Pmax

(9)

where H is the resource reservation probability, F is the candi-
date resource filtering coefficient, C is the reselection counter
step offset, and P is the transmission power. 1−H determines
the probability of triggering resource reselect when RC is
equal to 0. When the channel is not crowded, the higher the H ,
the lower the probability of triggering reselect, and the smaller
the probability of resource collision caused by reselect. C
determines the reduced value of RC for each resource transfer
using a predetermined resource, which defaults to 1. Dynamic
reselection counter step offset can help SPS algorithm cope
with more complex and changeable channel conditions, and a
larger C can help SPS quickly enter the reselection time to
avoid continuous resource collisions. P determines the range
of broadcast transmission, and the appropriate transmission
power can not only save energy but also reduce the interference
between transmitters.

IV. RL BASED RESOURCE SELECTION ALGORITHM

This section mainly introduces the modeling of multi-agent
environments and the enhanced SPS algorithm based on the
QMIX algorithm.

A. Modeling of Multi-Agent Environments

Each vehicle interacts with the vehicular network environ-
ment as an agent and takes actions based on state observations,
aiming to solve the optimization problem (9) At each time
t, the vehicle takes a decision at based on the observed
environment state ot. The environment will be transferred to
st+1, and then the vehicle will receive a reward r based on
the decision made at the previous time. In the multi-agent
environment architecture we established, the state observation
space O, action space A, state space S, and reward function
R are defined as follows:

1) Observation: In the actual environment under C-V2X
Mode 4, the information that the vehicle can stably observe
is very limited, mainly including two aspects: vehicle driving
information and spectrum resource sensing information. This
paper uses the following tuple to describe the observation
information of the tth time step after vehicle i performs the
action at−1 at the tth time step:

oit = {Speedit, V ecit,CSi
t, RCi

t} (10)

Vehicle driving information includes two elements: Speed and
V ec, which are vehicle speed and vehicle driving direction
respectively. These two pieces of information are instrument
information that can be stably obtained when driving in the
actual environment. Spectrum resource sensing information
CSi

t: includes five elements: CS1it, CS2tt, CS3tt,CS4tt, CS5tt.
These five elements are the five statistics of the RSSI of the
spectrum resources by the vehicle in the past broadcast period.
After excluding the interference of half-duplex, these five
statistics respectively represent the total number of resources,
the number of resources with RSSI greater than the threshold,
and the resource RSSI Cumulative sum, resource RSSI mean,
and resource RSSI standard deviation. It is used to help the
model perceive the overall situation of spectrum resources. In
addition to the above observations of the environment, there
is also a description of the protocol status. This paper uses the
resource reselection counter RCi

t to help the model understand
the current status of the SPS protocol.

2) Action: :The action performed by vehicle i at time step
t is defined as follows:

ait = (Hi
t , F

i
t , C

i
t , P

i
t ) (11)

where Hi
t represents the dynamic reservation probability of

spectrum resources. When the resource reservation counter
returns to 0, whether to reserve resources will be decided
based on the resource reservation probability. This paper uses
this parameter to control the stability of resource reservations.
F i
t represents the proportion of candidate resources. Before

resource reselection, it is necessary to filter the candidate
resource set with the lowest RSSI from the spectrum resource
pool according to the proportion of F i

t , and then randomly
select tile resources from the set. Ci

t is the offset step size of
the resource reservation counter. In the SPS protocol, every
time the vehicle performs a periodic broadcast, the resource
reservation counter will be decremented by 1. When it returns
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Fig. 1: QMIX-SPS resource allocation algorithm framework

to 0, resource reselection is possible. We use Ci
t to adjust the

single change step size of the resource reservation technology.
That is, each time a periodic broadcast is performed, the
resource reservation counter is decremented by (1 + Ci

t).P
i
t

represents signal transmission power.
3) State: Under the centralized training and distributed

execution architecture, global state information is only used
during the training phase to help each agent model modify
its strategy. Different from the state observation space, the
training phase needs to use as comprehensive state information
as possible to assist the agent in training. This information
includes the following aspects: observation information of
each vehicle, vehicle action information, and supplementary
related information. Global status information at time t:

st = {Ot,at−1, Locationt} (12)

where Ot is the collection of environmental observation data
of all vehicles following the execution of action at−1, and
at−1 is the collection of actions that all vehicles select to do
at the t − 1th time step. The position of every vehicle at the
tth time step, or Locationt, provides the extra relationship
information. During the training phase, this parameter is
intended to help the model measure the vehicle’s distribution
status.

4) Reward: The evaluation of the scheduling strategy in this
paper is based on the SINR achievement rate PAS. The higher
the PAS, the higher the proportion of communications that
meet QoS constraints. rt represents the global reward value
for the t− 1 event step as follows:

rt = PASt − bs (13)

where bs is the artificially set baseline. Since PAS is always
positive, if PAS is used directly as a reward, the reward
will always be positive, that is, any action selected will have
a positive reward, which may cause difficulties in model
training. Therefore, the PAS baseline bs is introduced, and
its value is the mean PAS value obtained by using the

original SPS protocol under the same conditions. Essentially,
it involves a type of comparative learning.

B. Dynamic Adaptive Parameters Optimization Algorithm
QMIX-SPS

Based on multi-agent environment modeling, this paper
proposes a joint dynamic parameters adaptive optimization
algorithm for SPS based on the QMIX algorithm. The QMIX
algorithm helps agents collaborate better to achieve global op-
timal results by constructing a hybrid network combined with
the value function of a single agent. The overall architecture
of the proposed algorithm is shown in Fig. 1. The proposed
framework comprises two components: the agent network and
the mixing network.

The agent network employs a deep recurrent Q network
model to directly determine actions, integrating the recurrent
unit (GRU) model within the deep recurrent neural network.
This integration enables agents to leverage past trajectory
data for decision-making. The agent network comprises three
layers, with the GRU network situated in the middle, and the
input and output layers consisting of fully connected neural
networks. The input layer receives information such as the
current observation data oit of the vehicle and the previous
action ait−1 taken. The GRU network requires the past hidden
state output hi

t−1 of the agent as input and outputs the current
hidden state hi

t. In the output layer, the model generates
the state-action value Q(τ it , ·) for all actions based on the
historical information τ it , and employs a greedy strategy for
action selection, as depicted in the subsequent equation:

π(τ) = argmax
a

Qπ(o, a) = at (14)

The final value output by the agent network is expressed as
Qi(τ it , a

i
t).

The mixing network is employed for value mixing, linking
the global joint action value Qtot(o,a) with the action value of
each agent Qi(τ it , a

i
t). The mixing network, a basic two-layer

feedforward neural network, is utilized to combine the action



values of individual agents in a monotonic manner to generate
Qtot(o,a). To adhere to the QMIX constraint of monotonicity,
the weight parameter of the hybrid network is constrained to
be non-negative [13].

More specifically, the weight parameters and biases of
each layer of the mixing network are produced by a distinct
hypernetwork. Each layer of weights in the mixing network
corresponds to a hypernetwork that takes the global state s
as input and outputs the parameters of the feedforward neural
network. The output is in vector form, which is then reshaped
into a matching matrix based on predefined rules.

Furthermore, to enhance model stability and mitigate over-
estimation effects, the QMIX network integrates concepts from
the traditional Deep Q Learning (DQN) algorithm, including
empirical buffer pools and dual Q-networks. The overall end-
to-end loss function for the QMIX network can be expressed
by the following equation:

L(θ) =
b∑

i=1

[(
yitot −Qtot(τ ,a, s; θ)

)2]
ytot = r + δmax

a′
Qtot(τ

′,a′, s′; θ−)

(15)

where b is the batch size sampled from the experience replay
buffer for each training, and ytot and θ− represent the values
obtained from the target network in the DQN as well as the
network parameters. The main training process is shown in
Algorithm 1.

V. SIMULATION RESULTS AND ANALYSIS

In this section, we introduce the simulation tools used in
the study and the relevant experimental parameters. Then,
the training process analysis, performance evaluation, and
compatibility analysis of the proposed reinforcement learning
algorithm are performed respectively.

A. Simulation Setup

Our simulation experiments are based on the open-source
Python simulator Simulators-for-SPS [8]. We made some
modifications to the simulator to make it more compliant
with the TR 36.885 [14], mainly changing the channel model
to Winner+B1 required by 3GPP. At the same time, the
simulation experiments refer to the 3GPP C-V2X simulation
guide [15]. We build an urban scenario with a 1299m×750m
Manhattan grid. The scenario is composed of 3×3 units, and
each road is two-way and four-lane. Vehicles move smoothly
in the urban grid. We considered different vehicle densities
and vehicle kinematics in the simulation and generated real
traffic trajectory data by the road traffic simulator Simulation
of Urban MObility (SUMO). The parameters of the simulation
experiments are shown in Table I below.

B. Evaluation Metrics

To evaluate the performance of different resource selection
algorithms, we introduce the following metrics in addition to
PAS.

Algorithm 1: Training Algorithm
Input: learning rate α, replay buffer D, step limit

stepmax, episode limit episodemax, parameter
synchronization interval stepinr, batch-size,
reward factor δ

Output: θ, the parameters of mixing network, agent
networks and hypernetwork

1 Initialise θ
2 step = 0, θ− = θ
3 while step < stepmax do
4 t = 0
5 Get initial state s0
6 while st ̸= terminal and t ≤ episodemax do
7 foreach i in Vehicles do
8 Get available actions Ai

t for vehicle i
9 τ it = τ it ∪ {(oit, ait)}

10 ϵ=epsilon-annealing(step)
11 ait =

argmax
ai
t∈Ai

t

Q(τ it , a
i
t) with probability 1− ϵ

Randomly select action from Ai
t

with probability ϵ

12 end
13 Get reward rt and next state st+1

14 D=D∪{(st,at, rt, st+1)}
15 t = t+ 1,step = step+ 1
16 end
17 if D > batch-size then
18 train-batch b ← random batch of episodes from

D
19 foreach b in train-batch do
20 Calculate Qtot using Mixing-network with

Hypernetwork(s; θ))
21 Calculate target Qtot using Mixing-network

with Hypernetwork(s′; θ−))
22 end
23 ytot = r + δmaxQtot(τ

′, a′, s′; θ−)
24 ∆Qtot = ytot −Qtot

25 ∆θ = ∇θ(∆Qtot)
2

26 θ = θ − α∆θ
27 end
28 Synchronize parameters every stepinr: θ− ← θ
29 end

• Packet delivery rate (PDR): The ratio of the number
of packets successfully received by the vehicle to the
number of packets expected to be received by the vehicle.

• Transmission speed:The transmission rate can be calcu-
lated from (4). This metric can be used to measure the
instantaneous capacity of the link.



TABLE I: Simulation parameters

Parameter Value
Vehicle speed limit 60 km/h

Vehicle average initial speed 36 km/h
Vehicle acceleration [-4.5 m/s2,4.5 m/s2]

Carrier frequency 5.9 GHz
Channel bandwidth 10 MHz

Subchannels per subframe 5
RBs per subchannel 10

Modulation and coding scheme MCS 4
Path loss model WINNER+B1

Antenna gain 3 dB
Antenna height 1.5 m

Shadow fading standard and deviation 3 dB, 4 dB
RSRP threshold -128 dBm

Resource retention period 100ms
Message sending frequency 10HZ

Packet size 190 Bytes

C. Simulation Result
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Fig. 2: Training performance evaluation for QMIX-SPS

1) Training process analysis: Fig. 2(a) shows the training
performance of our proposed QMIX-SPS algorithm with a
mini-batch size of 256. It is observed that the loss function
value of the mixing network decreases rapidly with the in-
crease of training episodes until it converges to a minimal
value. Fig. 2(b) shows the changing trend of the average
reward as the number of training sets increases. The average
reward climbs oscillate over time before reaching a dynamic
equilibrium, which is a normal phenomenon in reinforcement

learning. It can be seen that the training algorithm we proposed
performs well at convergence.

2) Performance of the Algorithm: As shown in Fig. 3,
we investigate the performance of the SPS algorithm under
varying vehicle densities in an urban scenario. When the total
vehicle count is less than or equal to 500, the SPS algorithm’s
performance across metrics is not significantly affected by
the vehicle count. However, once the vehicle count exceeds
500, we observe a relative decline in the SPS algorithm’s
performance, aligning with the limited available spectrum
resources. This suggests the SPS algorithm’s adaptive ca-
pabilities in low-density scenarios, but limited performance
improvements in high-density settings. To address this, we
propose the QMIX-SPS (RL) algorithm, which builds on
the SPS mechanism with adaptive control of the algorithm
parameter and signal transmit power. Experiments confirm
the QMIX-SPS algorithm significantly enhances key C-V2X
mode 4 communication metrics in the urban Manhattan grid
scenario. Our findings highlight the need for scalable com-
munication strategies to ensure reliable V2X performance in
high-density urban environments. The QMIX-SPS algorithm
offers a promising approach to improving V2X communication
performance in complex urban settings.

3) Compatibility analysis: Since C-V2X is an evolving
technology, different versions of MAC layer protocols must
coexist. This paper considers that the newly proposed algo-
rithm needs to maintain a certain degree of compatibility with
the existing SPS protocol. The compatibility here refers to
reducing the impact of introducing new resource allocation
algorithms into the SPS environment in the original envi-
ronment. Specifically, we consider different proportions of
QMIX-SPS vehicles deployed in the SPS environment. The
deployment proportion is equal to the ratio of the number
of vehicles deploying QMIX-SPS to the total number of
vehicles. As can be seen from Fig. 4, overall the QMIX-
SPS algorithm has good compatibility with SPS, and the
deployment of QMIX-SPS will not affect the performance of
the SPS vehicle network. On the contrary, deploying QMIX-
SPS can improve the performance of the SPS network. This
performance improvement is particularly obvious in the case
of low-density (100 vehicles) and high-density (600 vehicles),
which illustrates the coordinating role of QMIX-SPS in vehicle
communication networks. The performance optimization of
the SPS network by QMIX-SPS is not comprehensive. For
example, QMIX-SPS decreases the performance of the SPS
network in an 80% deployment ratio setting with 400 vehicles.

VI. CONCLUSION

In this paper, we first introduce the spectrum resource
allocation problem in C-V2X Mode 4 in detail and describe the
system modeling and formal definition of this problem. Before
formally introducing the algorithm proposed in this paper, we
explain the design of reinforcement learning elements for this
problem, including the design of action space, state space,
observation space, and reward function. Subsequently, this
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Fig. 3: Performance of QMIX-SPS.
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Fig. 4: Compatibility of QMIX-SPS.

section introduces the proposed QMIX-SPS algorithm includ-
ing the implementation process, optimization mechanism, and
pseudo-code description. Finally, this section uses two groups
of experiments to verify the impact of the algorithm on C-V2X
Mode 4 communication performance and its compatibility
with the original SPS algorithm. Experimental results prove
that our proposed algorithm can effectively improve global
communication performance while maintaining good compat-
ibility with the SPS. In future work, we will further analyze
the challenges of parameter optimization using reinforcement
learning.
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