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Story point estimation is a key practice in Agile project management that assigns e®ort values

to user stories, helping teams manage workloads e®ectively. Inaccurate story point estimation

can lead to project delays, resource misallocation and budget overruns. This study introduces
Story Point Estimation using Reinforced Transformers (SPERT), a novel model that integrates

transformer-based embeddings with reinforcement learning (RL) to improve the accuracy of

story point estimation. SPERT utilizes Bidirectional Encoder Representations from Transfor-

mers (BERT) embeddings, which capture the deep semantic relationships within user stories,
while the RL component re¯nes predictions dynamically based on project feedback. We evaluate

SPERT across multiple Agile projects and benchmark its performance against state-of-the-art

models, including SBERT-XG, LHC-SE, Deep-SE and TF-IDF-SE. Results demonstrate that

SPERT outperforms these models in terms of Mean Absolute Error (MAE), Median Absolute
Error (MdAE) and Standardized Accuracy (SA). Statistical analysis using Wilcoxon tests and
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A12 e®ect size con¯rms the signi¯cance of SPERT's performance, highlighting its ability to
generalize across diverse projects and improve estimation accuracy in Agile environments.

Keywords: Agile project management; story point estimation; transformers; BERT; RL;
machine learning.

1. Introduction

Agile project management relies on accurate story point estimation to allocate

resources e®ectively, yet traditional models struggle to keep pace with the evolving

and dynamic nature of Agile environments [1, 2]. Since the introduction of the Agile

methodology [3], e®ort estimation has become a critical component of software

project management. Accurate estimates are necessary for planning, budgeting and

resource allocation. Without precise estimations, projects risk budget overruns,

delays or even cancellations [2]. For example, a report by the Standish Group reveals

that over 50% of software projects su®er from time and cost overruns, with 31%

being canceled before completion [2]. A joint study by McKinsey and the University

of Oxford further underscores this, showing that large software projects run 66% over

budget and are delivered 33% later than planned [4]. These statistics highlight the

importance of e®ective e®ort estimation for project management, mitigating risks

and increasing project success.

Unlike existing static models, Story Point Estimation using Reinforced Trans-

formers (SPERT) leverages Bidirectional Encoder Representations from Transfor-

mers (BERT) embeddings alongside an reinforcement learning (RL) mechanism that

re¯nes predictions in real-time. This dual approach not only captures the contextual

depth of user stories but also adapts to project feedback, addressing limitations

found in traditional machine learning (ML)-based estimation models. Traditionally,

e®ort estimation methods were used in linear methodologies like the Waterfall model,

where estimations were performed at the start of the project and applied to large-

scale modules. Methods such as The Constructive Cost Model (COCOMO) [5] and

Function Point Analysis [6] were widely adopted, relying on prede¯ned metrics and

historical project data. These models worked reasonably well in structured envir-

onments but struggled when applied to modern, °exible methodologies like Agile,

where requirements change frequently, and e®ort estimation must be revisited reg-

ularly [7]. This contrast demonstrates the need for adaptive estimation approaches

that can accommodate the iterative nature of Agile projects.

Agile methodologies have fundamentally transformed the software development

landscape by promoting iterative development, °exibility and frequent delivery

through smaller tasks known as user stories [1]. In Agile, the focus shifts from long-

term project-wide estimates to more granular, sprint-based estimates, introducing

unique challenges in e®ort estimation. Agile projects must accommodate volatile

requirements, customer feedback and evolving business goals, all of which make

accurate e®ort estimation challenging [8].

2 W. Younas et al.
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One of the major challenges in Agile project management is dealing with vola-

tility. Agile projects frequently experience changing requirements and unforeseen

customer feedback during development, which directly impact the estimation of

story points [8–10]. A typical example is when a feature is reprioritized midway

through a sprint due to a sudden shift in business strategy. This requires developers

to revisit their initial e®ort estimates. This volatility in requirements demands a

°exible approach to story point estimation that can dynamically adapt to these

changes. Traditional models like COCOMO, which rely on static project data, are

not well-suited for such dynamic environments [5].

To address these challenges, several models have been proposed, including

Sentence-BERT with XGBoost (SBERT-XG) [11], Lightweight Hybrid Classi¯er for

Software E®ort Estimation (LHC-SE) and Deep Learning-based Software E®ort

Estimation (Deep-SE). SBERT-XG combines Sentence-BERT text embeddings with

the XGBoost algorithm to predict story points, capturing the semantic context

within user stories more e®ectively [12, 13]. However, while it improves upon basic

text representation models, SBERT-XG is limited in its ability to handle long-term

dependencies in textual data. Similarly, LHC-SE employs a hybrid ML approach to

e®ort estimation, leveraging clustering techniques to group similar user stories and

improve prediction accuracy [14]. Although this approach helps in reducing

estimation variance, it still lacks the °exibility required in highly dynamic Agile

environments. Deep-SE utilizes deep learning techniques, such as neural networks, to

model complex relationships between story points and user story features [15].

However, despite their promise, deep learning models often require large datasets for

training and can be prone to over¯tting in smaller Agile projects, limiting their

generalization across diverse scenarios [16].

Furthermore, traditional Natural Language Processing (NLP) techniques such as

Term Frequency-Inverse Document Frequency (TF-IDF) [17] have been employed in

earlier attempts to automate story point estimation. While TF-IDF can provide a

basic representation of user stories by encoding word frequency, it struggles to

capture deeper semantic relationships and contextual dependencies that are essential

for understanding the complexity of Agile tasks. In contrast, more advanced NLP

models like BERT have revolutionized the ¯eld of natural language understanding

by capturing both syntactic and semantic nuances in text [18]. BERT's ability to

process bidirectional context (i.e. considering the words before and after a token)

makes it particularly suited for analyzing user stories, which often contain complex

and context-dependent language. For instance, the phrase \optimize database

performance" may imply di®erent levels of complexity depending on the surrounding

context, which BERT can capture e®ectively [19, 20].

While these models o®er signi¯cant improvements, their primary limitation lies in

their static nature ��� none of them are designed to continuously learn and adapt as

project conditions evolve. This is where RL comes into play. RL o®ers a powerful

solution to this problem by allowing models to adjust their behavior based on real-

time feedback. RL has been successfully applied in various domains, such as game

SPERT: Reinforcement Learning-Enhanced Transformer Model 3
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playing, robotics and ¯nancial forecasting [21]. In the context of Agile software

development, RL can help story point estimation models dynamically re¯ne their

predictions as project requirements, team dynamics or customer feedback change

during development. Proximal Policy Optimization (PPO), in particular, is an

e±cient RL algorithm known for its stability and robustness in learning policies for

continuous tasks [22, 23]. PPO enables the model to adjust story point predictions in

response to the feedback it receives, ensuring that it stays adaptable throughout the

project's lifecycle [24].

In this paper, we introduce SPERT, a novel model that combines the strengths of

BERT-based embeddings with the adaptability of RL. SPERT is speci¯cally designed

to address the limitations of existing models in handling dynamic Agile environments.

By leveragingpre-trained transformer embeddings, SPERTcaptures the rich semantic

information in user stories, while its RL component ensures that the model continu-

ously improves its predictions based onproject feedback.Unlike traditionalmodels like

COCOMO, which rely on static historical data, SPERT o®ers a °exible, data-driven

approach that adapts to the evolving conditions of Agile projects.

Our contributions are as follows:

(1) Automated E®ort Estimation: We propose a model that automates e®ort

estimation using transformer-based NLP techniques combined with RL, o®er-

ing a scalable solution for Agile projects.

(2) Improved Prediction Accuracy: By leveraging BERT embeddings and RL,

SPERT achieves higher accuracy in story point prediction compared to models

like SBERT-XG, LHC-SE and Deep-SE.

(3) Integration of NLP Techniques: SPERT employs advanced NLP methods, such

as BERT, to capture the semantic structure of user stories, leading to more

reliable e®ort estimation.

(4) Comprehensive Evaluation: Through extensive experimentation across multi-

ple Agile projects, we demonstrate the e®ectiveness of SPERT in reducing

prediction error and improving generalization across di®erent projects.

The remainder of this paper is organized as follows. Section 2 reviews related

work, including traditional and ML-based e®ort estimation methods. Section 3

describes the dataset used in our experiments. Section 4 outlines the proposed

methodology, detailing the architecture of SPERT and its integration of BERT

embeddings and RL. Section 5 explains the experimental setup and evaluation

metrics. Section 6 elaborates on the model training process. Section 7 presents the

evaluation methodology, while Sec. 8 discusses the experimental results. Finally,

Sec. 9 concludes the paper with suggestions for future research.

2. Related Work

Software e®ort estimation (SEE) has evolved over the decades from traditional

models to state-of-the-art ML and NLP methods. While older methods like

4 W. Younas et al.
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COCOMO and Function Point Analysis [5, 6] laid the groundwork for early e®ort

estimation, they are ill-suited for modern Agile environments, where project scope

changes frequently. These traditional models relied on prede¯ned metrics and

upfront estimation, making them less adaptable to Agile's dynamic nature [7].

In recent years, the focus has shifted toward developing ML-based approaches

that automate the process of story point estimation. These methods aim to improve

estimation accuracy by learning patterns from historical data, thereby reducing re-

liance on manual input and expert judgment [25]. This section divides the related

work into three key areas: (A) ML-based e®ort estimation, (B) NLP techniques in

story point estimation and (C) RL in e®ort estimation. A fourth subsection (D) is

the comparison of existing baseline models and discusses current models used for

comparison in this study.

2.1. ML-based e®ort estimation

Early ML models, such as decision trees, support vector machines (SVMs) and linear

regression, have shown potential in automating e®ort estimation [24, 26, 27]. These

models aim to predict story points based on historical data, improving consistency

over expert-driven estimates. However, the manual feature engineering required by

these models often results in biased or incomplete feature sets, limiting their scal-

ability and adaptability to new projects. Moreover, these traditional ML models tend

to overlook the sequential nature of Agile stories, which contain rich temporal

information [15, 18].

In response to these limitations, deep learning-based methods have emerged as a

more powerful tool for e®ort estimation. Deep neural networks (DNNs) can auto-

matically extract features from raw data, reducing the need for manual engineering

[16, 29]. Despite their advantages, deep learning models often require large datasets

and are prone to over¯tting in small data environments. Furthermore, the \black

box" nature of these models can make them di±cult to interpret, posing challenges in

explaining predictions to stakeholders [30].

2.2. NLP techniques in story point estimation

Recent advancements in NLP techniques have made signi¯cant contributions to

story point estimation by enhancing the ability to process and understand textual

data. Traditional NLP methods, such as Bag-of-Words (BoW) and TF-IDF, repre-

sent text in a way that overlooks the dependencies between words, resulting in a loss

of context and meaning [31]. Although these methods have been used in early

ML-based story point estimation models, their inability to capture semantic rela-

tionships limits their e®ectiveness in Agile environments, where user stories are often

complex and context-dependent [32].

More recently, deep learning-based NLP methods have taken the forefront. Long

Short-Term Memory (LSTM) networks, which capture the sequential dependencies

SPERT: Reinforcement Learning-Enhanced Transformer Model 5
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in text, have shown promise in improving story point estimation accuracy [16, 33].

However, LSTMs struggle with modeling long-range dependencies, making them less

suitable for complex user stories with deep contextual relationships [34].

The introduction of transformer-based models like BERT has revolutionized NLP

by capturing both long-range dependencies and the nuanced context of text. BERT

leverages pre-trained embeddings, which provide richer, more robust representations

of user stories compared to earlier methods [18, 19]. In the context of Agile projects,

BERT's ability to model the relationships between di®erent parts of a user story is

particularly bene¯cial, as it allows for more accurate story point predictions [35].

2.3. RL in e®ort estimation

RL is an emerging approach in e®ort estimation, enabling models to continuously

learn and adapt to changing project environments. Unlike traditional models, which

rely on static data, RL-based approaches learn policies that dynamically adjust

predictions based on feedback from previous outcomes [36, 37]. This adaptability

makes RL particularly suitable for Agile environments, where project conditions

frequently evolve, and story complexities can shift over time [38, 39].

PPO is one of the leading RL algorithms, has been shown to be e®ective in

learning policies for continuous tasks such as e®ort estimation. PPO's stability and

e±ciency make it ideal for integrating RL into story point estimation models [22, 40].

While research on combining RL and NLP for story point estimation is still limited,

studies have begun exploring how these techniques can work together to provide

more accurate and adaptive estimates [41, 42].

2.4. Comparison of existing baseline models

Several state-of-the-art models have been developed for Agile story point estimation,

each leveraging di®erent techniques to tackle the challenges posed by dynamic

project environments. SBERT-XG, for example, integrates Sentence-BERT

embeddings with the XGBoost algorithm for regression tasks [43]. While e®ective in

capturing semantic context, its reliance on XGBoost limits its adaptability to

evolving Agile stories. LHC-SE uses a hybrid clustering approach to group similar

stories for more accurate estimation [39]. However, its static clustering approach

struggles with projects, where stories frequently change. Deep-SE applies deep

learning techniques to capture complex relationships between user stories and their

associated e®ort, but is prone to over¯tting in small datasets [15, 44].

In contrast, SPERT, the model we propose, combines the contextual under-

standing of transformer-based models like BERT with the adaptive learning capa-

bilities of RL. This hybrid approach enables SPERT to o®er more accurate and

°exible predictions in Agile environments, outperforming the aforementioned models

in both generalization and adaptability [18, 22].

6 W. Younas et al.
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3. Dataset

In this study, we utilized the publicly available dataset provided by Choetkiertikul

et al. [16], which consists of 23,313 user stories from 16 di®erent open-source projects

across nine repositories. This dataset serves as a robust foundation for training and

evaluating story point estimation models in Agile environments. The dataset

includes a variety of project types, such as mobile development, cloud platforms and

educational systems, making it suitable for testing model generalizability across

domains.

The repositories in the dataset include well-known projects such as Apache Mesos,

Appcelerator Studio, Aptana Studio and JIRA Software, among others. Each issue

or user story contains key attributes, including project ID, title, description and the

assigned story point estimate. These attributes provide su±cient context for ana-

lyzing the relationship between user stories and their associated e®ort, which is

crucial for accurate story point estimation.

3.1. Story point distribution

The story points in the dataset vary across projects, with a wide range of values

representing the complexity and required e®ort for each task. As shown in Fig. 1, the

majority of user stories are assigned relatively low story points, with story points

often assigned values of 1 or 3. These smaller story point values align with Agile

practices, where tasks are broken down into manageable units to facilitate faster

iteration and completion.

Although speci¯c sprint velocity data are unavailable in this dataset, velocity can

be inferred by summing the story points completed over multiple sprints. The story

Fig. 1. Story point distribution across combined datasets.

SPERT: Reinforcement Learning-Enhanced Transformer Model 7
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point distribution aids in estimating team performance, while progress analysis over

time can guide future project planning and resource allocation. As Agile methodol-

ogies emphasize iterative development and regular feedback, understanding velocity

trends is crucial for re¯ning story point estimates and ensuring timely delivery.

Through the insights gained from this dataset, we can simulate how Agile teams

adjust to evolving project conditions and improve their estimation accuracy over

time.

3.2. Cross-project dataset diversity

The dataset includes a diverse set of projects from multiple domains, such as mobile

development and educational systems. This diversity makes it ideal for cross-project

evaluation, allowing us to assess the model's ability to generalize across di®erent

types of Agile projects. The variation in user story complexity and di®erences in

project domains helps evaluate the robustness of story point estimation models like

SPERT.

The dataset covers a broad spectrum of Agile software development scenarios,

with projects including both feature development and bug ¯xes. This diversity in

tasks and story point distribution enables the development and testing of models

that can handle di®erent project dynamics and user story complexities.

3.3. Example of user stories

To provide context for how story points are assigned, consider the following example

from the Apache Mesos project, illustrated in Fig. 2:

Title: \Changing Theme in Aptana Studio 3 makes selection color/col-

our opaque ��� code/text cannot be read/seen"

Description: Changing the theme in Aptana Studio 3 via the round

color/colour wheel with a drop-down button makes selection color/colour

opaque, i.e. loses transparency. Selected code/text cannot be read/seen.

Quitting out of Aptana Studio 3 and re-loading ¯xes the problem. See

attachment for an example.

This issue was assigned a story point estimate of 5, indicating its moderate

complexity. The detailed description allows the team to estimate the e®ort involved

in ¯xing the problem, providing a clear example of how Agile teams use story points

to allocate resources and prioritize tasks.

3.4. Revised dataset statistics

The key descriptive statistics for the dataset are summarized in Table 1, including

the number of issues, minimum and maximum story points, mean, median and

standard deviation of the story points. The diversity in story point values across the

8 W. Younas et al.
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Fig. 2. Example of a user story with story points in the Apache Mesos project.

Table 1. Revised descriptive statistics of the story point dataset.

Repo Project Abb. # Issues

Min

SP

Max

SP

Mean

SP

Median

SP

Std

SP

Apache Apache Mesos ME 1680 1 40 3.09 3 2.42

Usergrid UG 482 1 8 2.85 3 1.40
Appcelerator Appcelerator Studio AS 2919 1 40 5.64 5 3.33

Aptana Studio AP 829 1 40 8.02 8 5.95

Titanium SDK/CLI TI 2251 1 34 6.32 5 5.10

DuraSpace DuraCloud DC 666 1 16 2.13 1 2.03
Atlassian Bamboo BB 521 1 20 2.42 2 2.14

Clover CV 384 1 40 4.59 2 6.55

JIRA Software JI 352 1 20 4.43 3 3.51

Moodle Moodle MD 1166 1 100 15.54 8 21.65
Lsstcorp Data Management DM 4667 1 100 9.57 4 16.61

Mulesoft Mule MU 889 1 21 5.08 5 3.50

Mule Studio MS 732 1 34 6.40 5 5.39
Spring Spring XD XD 3526 1 40 3.70 3 3.23

Talendforge Talend Data Quality TD 1381 1 40 5.92 5 5.19

Talend ESB TE 868 1 13 2.16 2 1.50

Total 23,313

SPERT: Reinforcement Learning-Enhanced Transformer Model 9
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16 projects highlights the di®erent levels of task complexity and the varying nature of

project management within each repository.

4. Proposed Methodology

In this work, we present SPERT, a model designed to automatically estimate story

points by processing raw textual data from user story titles and descriptions. SPERT

integrates state-of-the-art transformer embeddings with adaptive regression based

on RL, allowing the model to dynamically adjust to evolving project environments

and make accurate predictions in real-time.

The architecture of SPERT is illustrated in Fig. 3, which highlights its core

components: pretrained transformer-based embeddings, a multi-layer transformer

encoder and an adaptive regression layer enhanced by RL.

4.1. Pretrained transformer embeddings

SPERT leverages pretrained transformer embeddings from BERT, which is designed

to capture deep semantic representations of text. These transformers are pretrained

on vast corpora, allowing them to learn rich contextual information, such as

Fig. 3. Architecture of the SPERT model, highlighting transformer embeddings, the multi-layer trans-

former encoder and the RL-based adaptive regression layer.

10 W. Younas et al.
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syntactic relationships, word meanings and the broader context within user stories.

This ensures that the embeddings can represent both simple and complex relation-

ships between words in user stories.

The input to SPERT consists of the concatenated title and description of each

user story, formatted with BERT's special tokens as follows:

½CLS�T ½SEP�D½SEP�;
where

. [CLS]: A classi¯cation token added at the beginning of the sequence. Its

embedding is used by SPERT to represent the overall sequence context for story

point estimation.

. [SEP]: A separator token used to distinguish the title and description. It also helps

BERT understand the boundaries between segments.

The sequence is tokenized and padded to a ¯xed length of 128 tokens, ensuring

uniform input sizes for BERT. The resulting embedding matrix captures both

semantic and syntactic relationships, as detailed below.

The formal embedding process is represented as

E ¼ Embeddingð½CLS� � T � ½SEP� �D� ½SEP�Þ; ð1Þ
where E is the resulting embedding, and T and D represent the title and description

of the user story, respectively. These embeddings are fed into the transformer

encoder, which extracts further features relevant for the story point estimation

task.

Token Limit Justi¯cation: The input sequence length for SPERT is set to a

maximum of 128 tokens, which includes BERT's special tokens ([CLS] and [SEP]).

This limit ensures computational e±ciency while capturing su±cient information for

the task. Analysis of the dataset revealed that 95% of user stories (titles and

descriptions combined) are represented within 128 tokens, including special tokens.

In cases where the content exceeds 128 tokens, the text is truncated, prioritizing

the initial portion of the sequence, as it often contains the most relevant information.

To validate the su±ciency of this limit, we conducted experiments using larger token

limits (256 and 512 tokens). These experiments showed no signi¯cant improvement

in prediction accuracy, con¯rming that a 128-token limit e®ectively balances infor-

mation retention and computational e±ciency.

Role of Syntactic Information: Although BERT is primarily designed to

capture semantic information, it implicitly encodes syntactic relationships through its

self-attention mechanism and pretraining objectives. For example, the transformer

architecture processes the relative positions and contextual dependencies of words,

which inherently re°ect syntactic patterns. The use of special tokens such as `[CLS]'

and `[SEP]' further supports this by marking segment boundaries and providing

positional cues, aiding in understanding the structure and organization of text.

SPERT: Reinforcement Learning-Enhanced Transformer Model 11

In
t. 

J.
 S

of
t. 

E
ng

. K
no

w
l. 

E
ng

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
al

ee
d 

Y
ou

na
s 

on
 0

2/
25

/2
5.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



In the context of SPERT, syntactic information plays a complementary role in

enhancing semantic understanding. User stories often describe tasks with speci¯c

structures and action-oriented phrasing, where syntactic cues such as the order of

verbs, modi¯ers and objects can hint at task complexity. For instance, a sentence

like \optimize database performance by reducing query times" contains syntactic

patterns that emphasize the relationship between actions (optimize, reducing) and

objects (database, query times), indirectly signaling e®ort and complexity.

By leveraging BERT embeddings, SPERT bene¯ts from a rich representation of

both syntactic and semantic features, even though syntax is not the primary focus of

the model. This dual understanding enables SPERT to better analyze user stories

and produce accurate story point predictions.

4.2. Transformer encoder for document representation

Once the embeddings are generated, they are passed through a multi-layer trans-

former encoder. This encoder consists of multiple layers of self-attention mechanisms

and feedforward networks. The self-attention mechanism is particularly powerful

in capturing long-range dependencies within the text, which is important for

understanding the nuances of user stories in Agile development.

The self-attention mechanism assigns di®erent weights to various parts of the

input text, allowing the model to focus on the most relevant sections when making

predictions. For example, in a user story, the phrase \implement user login" may

carry more weight than descriptive context such as \in the next sprint".

The output of the transformer encoder is denoted as

H ¼ TransformerEncoderðEÞ: ð2Þ
This output encodes both the semantic content of the input and the structural

relationships between words, making it a rich representation for further processing.

The multi-layer transformer encoder's depth ensures that even complex dependen-

cies between words are captured e®ectively, enhancing the model's ability to make

accurate story point predictions.

4.3. Enhanced explanation of BERT and RL integration in SPERT

The integration of BERT embeddings and RL in SPERT forms the core of its

adaptability and prediction accuracy. This section provides a detailed explanation of

their interaction and a °owchart to illustrate the information °ow within the model.

BERT Embedding Generation: SPERT utilizes pretrained BERT embed-

dings to capture the semantic richness and context of user stories. The input to the

model, consisting of the title and description of a user story, is tokenized using BERT's

tokenizer. This tokenized input is passed through the BERT encoder, producing dense

vector embeddings that represent both the syntactic and semantic features of the user

story. These embeddings are denoted as E ¼ BERTðT �DÞ, where T represents the

title, D represents the description and � denotes concatenation.

12 W. Younas et al.
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Interaction with RL: The BERT embeddings (E) serve as the primary input to

the RL-based adaptive regression layer. The RL component, implemented using

PPO, dynamically adjusts predictions based on feedback from the Mean Absolute

Error (MAE). The interaction proceeds as follows:

(1) Initial Prediction: The embeddings generated by BERT are processed

through a series of fully connected layers to produce an initial story point

estimate (ŷinit).

(2) Feedback Mechanism: The RL agent evaluates the initial prediction by

comparing it to the ground truth (y) using the MAE loss. This feedback signal

guides the adjustment of the prediction.

(3) Policy Update: PPO updates the policy network to minimize prediction

errors. This involves re¯ning the weight parameters such that future predic-

tions align more closely with the actual story points.

(4) Final Prediction: The updated policy generates a re¯ned story point

estimate (ŷfinal), ensuring that the model remains adaptable to dynamic project

conditions.

The RL mechanism operates as a dynamic layer that learns from project-speci¯c

feedback, allowing SPERT to continuously improve its predictions during training.

Figure 3 illustrates the overall architecture of SPERT, encompassing all major

components and their interactions. Steps 3 and 4 in the architecture emphasize the

critical relationship between the BERT embedding layer and the RL-based regres-

sion layer. Speci¯cally, the embeddings generated by BERT serve as input to the RL

mechanism, which dynamically re¯nes predictions based on feedback. This interplay

allows SPERT to continuously adapt and improve its story point estimations.

4.4. Adaptive regression with RL

SPERT's adaptive regression layer employs RL to dynamically adjust the model's

predictions based on feedback. This enables SPERT to handle evolving project

environments that are typical in Agile development, where user story complexities

can change frequently.

SPERT uses the PPO algorithm for RL. PPO is chosen because of its stability and

e±ciency in learning policies for continuous control tasks [45], which in our case

translates to learning how to adjust story point estimates over time.

How SPERT Adapts:

(1) Initial Prediction: The transformer encoder produces an initial story point

estimate based on the embeddings and document representation.

(2) Feedback Mechanism: The PPO algorithm evaluates the prediction by

comparing it to the actual story point and computing the MAE. This error

serves as the feedback signal.

SPERT: Reinforcement Learning-Enhanced Transformer Model 13
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(3) Policy Update: Based on the feedback, the PPO algorithm updates the

model's policy to improve future predictions. The objective is to minimize

prediction errors, and PPO optimizes the following objective function:

LPPO ¼ Et½minðrtð�ÞAt; clipðrtð�Þ; 1� �; 1þ �ÞAtÞ�: ð3Þ
(4) Continuous Adaptation: As new user stories and project conditions emerge,

the RL component re¯nes the predictions, making the model highly adaptable.

This is particularly important in Agile environments, where the nature of user

stories and project scopes can shift dramatically over time.

Structuring Feedback as Rewards or Penalties: In the RL framework,

project feedback is structured into a reward signal that guides the policy updates.

The reward function is de¯ned to re°ect the prediction accuracy, with higher rewards

assigned to predictions closer to the actual story points and penalties applied to

larger deviations. Speci¯cally, the reward R is formulated as

R ¼ �jy� ŷj; ð4Þ
where y is the actual story point and ŷ is the predicted story point. This formulation

ensures that the RL agent is incentivized to minimize the absolute error.

Balancing Prior Knowledge and New Feedback: SPERT achieves a

balance between learning from prior predictions and adapting to new feedback

through the PPO algorithm. The policy update process incorporates both the

cumulative reward from past predictions and the instantaneous reward from new

project feedback. By maintaining a bu®er of historical experiences, SPERT prevents

over¯tting to recent data while still adapting to evolving project conditions. The

clipped objective function in PPO ensures stable updates, avoiding drastic policy

changes that could destabilize the learning process.

This balance allows SPERT to generalize e®ectively across projects while

retaining the °exibility to re¯ne its predictions dynamically as new feedback becomes

available.

By integrating this structured feedback loop, SPERT not only re¯nes its

predictions over time but also ensures that the learning process remains robust and

adaptable to the dynamic nature of Agile environments.

4.5. Final prediction layer

After the document representation has been re¯ned through RL, it is passed through

an Actor-Critic model, which processes the ¯nal representation, R, and outputs the

continuous value representing the estimated story point:

y ¼ ActorCriticðRÞ: ð5Þ
This ¯nal output accounts for the inherent complexity and variability of tasks in

Agile development, providing a robust estimate of the story points.

14 W. Younas et al.
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4.6. System training and optimization

The SPERT model is trained using the AdamW optimizer, which is speci¯cally

suited for transformer-based models. AdamW combines the adaptive learning rate

strategy of Adam with weight decay, preventing over¯tting during training.

A learning rate scheduler is used, gradually adjusting the learning rate during

training to ensure smooth convergence. Dropout regularization is also employed to

avoid over¯tting, particularly when dealing with smaller datasets or when the model

is prone to memorizing speci¯c patterns.

The training objective is to minimize the MAE:

Lðŷ; yÞ ¼ 1

n

Xn
i¼1

jŷi � yij: ð6Þ

Through RL, the model continues to adapt during training, improving perfor-

mance over time and making it highly suitable for dynamic project environments.

5. Experimental Setup

In this section, we describe the experimental framework used to train, evaluate and

validate SPERT. The setup ensures robustness and scalability across a diverse dataset

of Agile project stories and leverages state-of-the-art techniques in NLP and RL.

5.1. Preprocessing

The raw textual data are processed to ensure that it is clean and suitable for

transformer-based models. Preprocessing includes standardizing casing, removing

special characters and truncating long sequences. Key steps are the following:

. Text Cleaning: Removal of HTML tags, URLs and non-alphanumeric characters

to reduce noise.

. Tokenization: Tokenization is performed using the BERT tokenizer, converting

text into token sequences for transformer-based processing.

. Padding and Truncation: Sequences are either padded or truncated to a ¯xed

length of 128 tokens to ensure uniform input sizes.

These preprocessing steps ensure that the textual data are clean, standardized

and ready for feature extraction by the transformer models [18].

5.2. Data splitting for cross-project generalization

The dataset was split into training, validation and test sets using a 60-20-20 ratio. To

avoid data leakage, we used a project-level split, meaning that entire projects were

kept in separate splits. This simulates a real-world scenario, where the model is

evaluated on new projects it has not encountered during training.

SPERT: Reinforcement Learning-Enhanced Transformer Model 15
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The split was strati¯ed by project type and domain to maintain a balanced

representation across the di®erent Agile projects, allowing the model to generalize its

learning across diverse domains.

5.3. Feature extraction with transformer embeddings

SPERT utilizes pretrained BERT transformer [11, 19], for feature extraction. These

models provide contextual embeddings that capture both syntactic and semantic

relationships in the user stories. Transformers are particularly well-suited for this

task due to their ability to handle long-range dependencies, which are crucial for

understanding complex stories in Agile environments.

By leveraging pretrained embeddings, SPERT avoids the need for manual feature

engineering and ensures scalability across diverse projects.

5.4. Hyperparameter tuning

To optimize the model's performance, a grid search was conducted to explore various

hyperparameter combinations, such as batch size, learning rate and dropout rate.

The optimal con¯guration was selected based on the model's performance on the

validation set. The key hyperparameters tested during the grid search are shown

below.

Hyperparameter Tuning Grid Search:

. Learning Rate: f1e�5, 3e�5, 5e�5g

. Batch Size: f16, 32g

. Dropout Rate: f0.1, 0.3g
Basis for Adjustment Range and Step Size: The adjustment ranges and step

sizes for these hyperparameters were determined based on a combination of prior

research, preliminary experiments and practical considerations:

. Learning Rate: The range of f1e�5, 3e�5, 5e�5g was selected based on

empirical evidence from related works involving transformer models such as BERT

[18]. These values are known to provide stable convergence during ¯ne-tuning. The

step size of 2e�5 was chosen to ensure adequate coverage of the range without

unnecessary computational overhead.

. Batch Size: The range of f16, 32g re°ects common choices for BERT-based

models, where computational e±ciency and gradient stability are critical. Larger

batch sizes were avoided to prevent memory issues, while the step size of 16 aligns

with practical limitations of GPU hardware used in the experiments.

. Dropout Rate: The values f0.1, 0.3g were selected based on their e®ectiveness in

regularizing deep models without causing under¯tting or over¯tting [46]. The step

size of 0.2 was considered su±cient to test low and moderate dropout settings

while keeping the grid search computationally manageable.

16 W. Younas et al.
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These ranges and step sizes ensure a balance between exhaustive search and

computational feasibility, allowing the model to generalize e®ectively while avoiding

over¯tting of hyperparameters. The ¯nal con¯guration was selected based on the

combination yielding the lowest validation error during the grid search.

5.5. Training con¯guration

The model was trained using the AdamW optimizer [47, 48], with a learning rate

scheduler and warm-up steps to ensure smooth convergence. Dropout regularization

was applied to prevent over¯tting, and the overall training objective was to minimize

MAE. The training hyperparameters are summarized below.

Training Hyperparameters:

. Learning Rate: 3e�5

. Batch Size: 32

. Dropout Rate: 0.1

. Epochs: 20

6. Model Training

This section outlines the training process of SPERT, covering key components such

as training objectives, optimization strategies and the integration of RL. The goal of

the training process is to ensure that the model learns e®ectively from the data while

avoiding over¯tting or under¯tting.

6.1. Training objectives

The primary goal of the training procedure is to minimize the error in story point

estimation. MAE is used as the loss function:

Lðŷ; yÞ ¼ 1

n

Xn
i¼1

jŷi � yij: ð7Þ

MAE is preferred because it provides a more interpretable measure of error for

tasks like story point estimation. Agile projects often have varying degrees of task

sizes and complexities, and MAE captures these variances more e®ectively than

Mean Squared Error (MSE), which can overemphasize outliers.

6.2. Training procedure

SPERT's training process is divided into two stages: transformer-based training for

feature extraction and RL-based adaptive regression. This two-stage approach

allows the model to capture semantic relationships and adjust predictions dynami-

cally based on feedback.

SPERT: Reinforcement Learning-Enhanced Transformer Model 17
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6.2.1. Stage 1: Transformer-based training

In the ¯rst stage, the transformer embeddings are ¯ne-tuned using the AdamW

optimizer. The transformer layers are updated based on the training data, capturing

essential features for story point estimation.

Hyperparameters for Fine-tuning:

. Batch Size: 32

. Learning Rate: 3e�5

. Dropout Rate: 0.1

. Epochs: 20

During this stage, dropout and weight decay are used to prevent over¯tting. The

¯ne-tuned embeddings provide a rich representation of the user stories for the re-

gression layer.

6.2.2. Fine-tuning BERT results across projects

To evaluate the e®ectiveness of the BERT ¯ne-tuning process across all 16 projects,

we monitored the training loss for 20 epochs. The combined loss curves for all pro-

jects are presented in Fig. 4. This ¯gure demonstrates consistent reduction in

training loss, with most projects converging by epoch 15.

Upon analysis of the loss curves, it was observed that the loss stopped decreasing

signi¯cantly after approximately 15 epochs for most projects. This indicates that

training beyond 15 epochs o®ers diminishing returns, making it a suitable stopping

Fig. 4. Combined ¯ne-tuning loss curves for all 16 projects during the BERT ¯ne-tuning process.

18 W. Younas et al.

In
t. 

J.
 S

of
t. 

E
ng

. K
no

w
l. 

E
ng

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
al

ee
d 

Y
ou

na
s 

on
 0

2/
25

/2
5.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



point for ¯ne-tuning. The results highlight the robustness of the ¯ne-tuning process,

showing that SPERT e®ectively optimized the BERT embeddings for semantic

representation across diverse Agile project datasets.

6.2.3. Stage 2: RL-based adaptive regression

Once the transformer embeddings are trained, the adaptive regression layer is

trained using RL. The PPO algorithm is used to update the policy based on feedback

from the MAE loss.

The PPO algorithm optimizes the policy � by maximizing the following objective:

LPPO ¼ Et½minðrtð�ÞAt; clipðrtð�Þ; 1� �; 1þ �ÞAtÞ�: ð8Þ
This allows SPERT to adapt its predictions over time, ensuring that the model

remains responsive to changing project conditions.

6.3. Optimization strategy

The AdamW optimizer is used for both the transformer ¯ne-tuning and RL stages.

The learning rate scheduler is applied to ensure smooth convergence, with the fol-

lowing schedule:

�t ¼ �0 � 1� t

T

� �
: ð9Þ

This strategy allows the model to start with a smaller learning rate and gradually

decay it over time to avoid over¯tting.

6.4. Training time and computational resources

The training process was conducted on NVIDIA Tesla V100 GPUs, with a total

training time of 30 h. Training was distributed across four GPUs to reduce com-

putational overhead and ensure timely convergence.

Training Time:

. Transformer Fine-tuning Stage: 10 h

. RL Stage: 20 h

7. Evaluation

To evaluate how accurate the SPERT predictions are, we use several evaluation

metrics: MAE, Median Absolute Error (MdAE) and SA, as shown in the following

formulas. These metrics are chosen because they provide an unbiased and reliable

way to evaluate prediction models, even in situations involving under- or over-esti-

mations, which is essential for a fair assessment process as supported by previous

SEE studies [32, 49–51].

SPERT: Reinforcement Learning-Enhanced Transformer Model 19
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. MAE measures the average magnitude of the errors in the story point predictions,

without considering their direction. It is de¯ned as

MAE ¼ 1

n

Xn
i¼1

jyi � ŷij; ð10Þ

where yi is the actual value, ŷi is the predicted value and n is the number of

observations. MAE provides an intuitive measure of model accuracy, with lower

values indicating better performance.

. MdAE is a robust measure of prediction error, which is less sensitive to outliers

compared to MAE. It is calculated as the median of the absolute di®erences

between actual and predicted values:

MdAE ¼ medianðjy1 � ŷ1j; jy2 � ŷ2j; . . . ; jyn � ŷnjÞ: ð11Þ
MdAE provides a better representation of typical prediction errors, especially

when the dataset contains extreme values.

. SA is a metric that re°ects the percentage of predictions that fall within an

acceptable range of the actual values, making it a practical measure for assessing

estimation accuracy. It is de¯ned as

SA ¼ 1

n

Xn
i¼1

Iðjyi � ŷij < �Þ; ð12Þ

where I is an indicator function that returns 1 if the condition is met, and 0

otherwise, and � is a prede¯ned threshold that represents an acceptable error

margin.

RQ1: How does SPERT compare with state-of-the-art ML and

NLP-based methods for story point estimation in Agile projects?

To address this question, we conducted a comprehensive comparative evaluation

of SPERT against several baseline models, including SBERT-XG, LHC-SE, Deep-SE

and TF-IDF-SE. The primary objective of this evaluation was to determine how well

SPERT performs in terms of story point estimation accuracy compared to existing

state-of-the-art methods.

The evaluation experiments were carried out across multiple Agile projects to

assess the generalizability of SPERT's performance. Each of the baseline models was

trained and tested under the same conditions as SPERT to ensure fairness in com-

parisons. The experiments involved training the models on 60% of the dataset, while

the remaining 20% was used for testing and 20% for validation. We further

conducted cross-project evaluations to assess the ability of SPERT to generalize to

new and unseen projects.

In addition, we conducted statistical signi¯cance testing using the Wilcoxon

signed-rank test to determine whether SPERT's performance improvements were

statistically signi¯cant compared to the baseline models. We also used the A12 e®ect

20 W. Younas et al.
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size to measure the practical relevance of the observed improvements, with values

greater than 0.7 considered indicative of substantial practical gains.

RQ2: Does the use of RL enhance the predictive capability of SPERT

compared to traditional regression approaches?

To answer this question, we compared SPERT with its RL component enabled

and disabled. Speci¯cally, we evaluated the model's performance with and without

the use of PPO in the adaptive regression layer. This allowed us to isolate the impact

of RL on prediction accuracy and adaptability.

The comparative evaluation was conducted using the same performance metrics

as for RQ1, i.e. MAE, MdAE and SA. We trained both versions of the model on the

same dataset and performed cross-validation to assess their predictive performance.

We then measured the di®erence in accuracy between the two versions, focusing on

whether the RL-enhanced SPERT was able to achieve better story point estimates

by learning from dynamic feedback.

RQ3: How does SPERT's transformer-based embeddings compare to

traditional NLP techniques like TF-IDF and Doc2Vec for story point

estimation?

To evaluate the e®ectiveness of SPERT's transformer-based embeddings, we

compared it against traditional NLP techniques, such as TF-IDF and Doc2Vec. The

key focus of this evaluation was to determine whether the contextual embeddings

generated by transformer models like BERT provided a more accurate representa-

tion of user stories compared to the traditional, static representations.

We ran experiments with the same evaluation metrics (MAE, MdAE and SA) and

measured the performance di®erences between SPERT, TF-IDF-SE and SBERT-

XG across multiple projects. These experiments were designed to highlight the

bene¯ts of deep contextual understanding provided by transformers in predicting the

complexity of Agile user stories.

RQ4: How well does SPERT generalize across multiple Agile projects

compared to baseline models, especially in cross-project estimation

scenarios?

To assess SPERT's cross-project generalization capabilities, we conducted cross-

project estimation experiments. In these experiments, SPERT was trained on one

project and tested on another to evaluate its ability to generalize beyond the speci¯c

dataset it was trained on.

We compared SPERT's performance to the baseline models (SBERT-XG,

LHC-SE, Deep-SE and TF-IDF-SE) to evaluate its robustness. The cross-project

evaluations provide insights into how well the model can adapt to new and unseen

Agile projects, which is crucial for its applicability in real-world Agile software

development scenarios.

The metrics used for these cross-project experiments included MAE and MdAE,

while we also conducted the Wilcoxon signed-rank test and computed the A12 e®ect

size to assess the statistical and practical signi¯cance of SPERT's generalization

capabilities.
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8. Results

In this section, we present the detailed results of the experiments described in the

previous section. We provide a thorough analysis of SPERT's performance in

comparison with the baseline models and discuss the implications of the ¯ndings in

terms of story point estimation accuracy, adaptability and generalizability.

RQ1: SPERT comparison with state-of-the-art ML and NLP-based

methods

The comparison between SPERT and the baseline models (SBERT-XG, LHC-SE,

Deep-SE and TF-IDF-SE) is summarized in Table 2. SPERT consistently demon-

strated superior performance across all evaluated metrics. Speci¯cally, SPERT

achieved a MAE of 0.71 on the Mesos project, compared to 1.64 for SBERT-XG, 1.34

for LHC-SE and 1.02 for Deep-SE.

The MdAE and SA metrics further indicate that SPERT provides more reliable

story point predictions. For instance, SPERT's MdAE was signi¯cantly lower than

the baselines, demonstrating that the model is less sensitive to extreme outliers.

SPERT demonstrates consistent improvements over baseline models across

multiple projects due to several factors. First, the use of pretrained BERT embed-

dings enables SPERT to capture both semantic and syntactic relationships within

user stories, providing a richer understanding of the text compared to traditional

techniques like TF-IDF or shallow embeddings. Additionally, SPERT's RL mecha-

nism dynamically adjusts predictions based on feedback, allowing the model to

generalize better across diverse project environments. Finally, the inclusion of

advanced preprocessing steps, such as tokenization and truncation, ensures clean and

uniform inputs, further improving performance.

The degree of improvement varies across projects due to the diversity in datasets.

Projects like ME and UG have user stories that align closely with the linguistic

patterns learned by BERT during pretraining, resulting in signi¯cant performance

gains. Conversely, projects with specialized or domain-speci¯c language, such as MD

and DM, may bene¯t less from BERT's general-purpose embeddings. Additionally,

the variability in the distribution of story points across projects can a®ect SPERT's

ability to generalize, as projects with balanced story point distributions provide more

robust training signals.

SPERT's Performance on the DM Project: While SPERT generally out-

performs baseline models, its performance on the DM project was slightly worse.

Analysis of the DM dataset revealed a high concentration of outlier story points,

which introduced noise into the training process and adversely a®ected the model's

predictions. Additionally, the DM project involves domain-speci¯c terminology and

unique patterns that were less e®ectively captured by BERT embeddings. In con-

trast, baseline models like SBERT-XG, which utilize simpler algorithms, were less

sensitive to outliers, resulting in slightly better performance. This highlights the

importance of ¯ne-tuning SPERT further for projects with unique characteristics or

developing strategies to mitigate the impact of outliers.
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The statistical signi¯cance of these results was con¯rmed using the Wilcoxon

signed-rank test, with p-values below 0.05 for most comparisons, indicating that

SPERT's performance improvements were statistically signi¯cant. The A12 e®ect

size values, averaging around 0.72, further con¯rm the practical signi¯cance of these

improvements.

Figure 5 illustrates the overall performance comparison in terms of MAE between

SPERT and the baseline models.

RQ2: Use of RL enhances the predictive capability of SPERT

The result of the RL component on SPERT's performance is shown in Table 3.

The results indicate that SPERT with RL consistently outperformed the version

without RL across all projects. For instance, SPERT with RL achieved an MAE of

0.68 in the Usergrid project, compared to 0.95 without RL, showing a signi¯cant

improvement in prediction accuracy.

Impact of RL Across Projects: The impact of RL varies signi¯cantly across

projects due to di®erences in the characteristics of the datasets and feedback signals.

Projects with highly structured user stories, such as ME and UG, bene¯t more from

RL as it dynamically re¯nes predictions by leveraging project-speci¯c feedback. In

contrast, projects like DM and MD, which contain outlier story points or domain-

speci¯c language, see smaller improvements with RL due to the increased complexity

of learning stable policies in noisy environments. Additionally, the variability in

reward quality ��� a®ected by the accuracy of initial predictions and the distribution

of story points ��� can in°uence the degree to which RL contributes to performance

gains.

Fig. 5. Overall performance comparison (MAE) between SPERT and baseline models.

SPERT: Reinforcement Learning-Enhanced Transformer Model 25

In
t. 

J.
 S

of
t. 

E
ng

. K
no

w
l. 

E
ng

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
al

ee
d 

Y
ou

na
s 

on
 0

2/
25

/2
5.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



Comparison of Fine-Tuned BERT Without RL: Fine-tuned BERT alone

demonstrates signi¯cant improvements over baseline models due to its ability to

capture rich semantic and syntactic relationships within user stories. This raises an

important consideration for resource-constrained environments: while RL o®ers

additional bene¯ts, especially in projects requiring dynamic adaptation to feedback,

¯ne-tuned BERT can achieve competitive results at a lower computational cost. For

example, in projects like BB and TI, ¯ne-tuned BERT achieves performance

comparable to SPERT with RL, highlighting its su±ciency for projects with stable

or less complex datasets.

Recommendations for Constrained Training Conditions: In scenarios

with limited computational resources, directly ¯ne-tuning BERT may be a viable

alternative to SPERT with RL. This approach retains the majority of performance

gains while signi¯cantly reducing training complexity and resource demands. How-

ever, for projects with highly dynamic or noisy environments, RL remains essential

for handling evolving conditions and improving generalization.

The MAE improvement is visualized in Fig. 6, showing that the RL-enhanced

SPERT has lower error rates compared to its non-RL counterpart across di®erent

projects.

RQ3: SPERT comparison with traditional NLP techniques

The comparative evaluation of SPERT's transformer-based embeddings with

traditional NLP techniques (TF-IDF and Doc2Vec) is summarized in Table 4.

SPERT outperformed both TF-IDF-SE and Doc2Vec in all evaluated metrics. For

instance, SPERT achieved an MAE of 1.24 in the Appcelerator Studio project,

compared to 1.51 for TF-IDF-SE and 1.71 for SBERT-XG.

Table 3. Impact of RL on model performance.

w/o RL w/RL Improvement

Proj MAE/MdAE/SA MAE/MdAE/SA MAE/MdAE/SA

ME 0.89/0.70/60.1 0.71/0.49/71.2 ¡0.18/¡0.21/þ11.1

UG 0.95/0.75/60.0 0.68/0.46/67.6 ¡0.27/¡0.29/þ7.6
AS 1.50/1.20/63.4 1.24/1.02/67.5 ¡0.26/¡0.18/þ4.1

AP 1.50/1.20/65.5 1.19/0.11/76.7 ¡0.31/¡1.09/þ11.2

TI 1.67/1.30/65.5 1.37/1.02/78.3 ¡0.30/¡0.28/þ12.8

DC 1.35/0.89/62.5 1.15/0.64/75.1 ¡0.20/¡0.25/þ12.6
BB 0.60/0.51/61.0 0.46/0.41/71.3 ¡0.14/¡0.10/þ10.3

CV 2.00/1.60/75.5 1.68/1.23/81.2 ¡0.32/¡0.37/þ5.7

JI 1.20/1.00/60.5 0.98/0.76/65.4 ¡0.22/¡0.24/þ4.9

MD 6.20/3.40/65.5 6.04/2.98/68.1 ¡0.16/¡0.42/þ2.6
DM 2.00/1.70/75.0 1.77/1.52/81.2 ¡0.23/¡0.18/þ6.2

MU 2.20/1.70/52.0 1.89/1.47/56.7 ¡0.31/¡0.23/þ4.7

MS 2.80/2.30/63.0 2.58/2.14/68.8 ¡0.22/¡0.16/þ5.8

XD 1.50/1.20/65.5 1.38/1.02/71.6 ¡0.12/¡0.18/þ6.1
TD 2.80/2.50/63.0 2.41/2.18/69.2 ¡0.39/¡0.32/þ6.2

TE 0.45/0.31/75.0 0.36/0.20/88.7 ¡0.09/¡0.11/þ13.7

26 W. Younas et al.

In
t. 

J.
 S

of
t. 

E
ng

. K
no

w
l. 

E
ng

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 W
al

ee
d 

Y
ou

na
s 

on
 0

2/
25

/2
5.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



Fig. 6. Impact of RL on model performance (MAE).

Table 4. Performance comparison: Transformer-based models vs traditional NLP models.

Abb. Model MAE MdAE SA Abb. Model MAE MdAE SA

ME SPERT 0.71 0.49 71.22 JI SPERT 0.98 0.76 65.36

SBERT-XG 1.64 1.25 63.03 SBERT-XG 1.36 1.45 56.32

TF-IDF-SE 1.34 1.00 34.38 TF-IDF-SE 1.47 1.62 46.12
UG SPERT 0.68 0.46 67.59 MD SPERT 6.04 2.98 68.14

SBERT-XG 1.65 1.34 48.96 SBERT-XG 7.21 3.25 63.10

TF-IDF-SE 1.65 1.42 46.36 TF-IDF-SE 6.31 7.00 57.30

AS SPERT 1.24 1.02 67.54 DM SPERT 1.77 1.52 81.23
SBERT-XG 1.71 1.29 54.62 SBERT-XG 2.79 2.06 74.51

TF-IDF-SE 1.51 2.00 51.89 TF-IDF-SE 1.49 1.00 55.71

AP SPERT 1.19 0.11 76.73 MU SPERT 1.89 1.47 56.74

SBERT-XG 5.81 4.49 63.86 SBERT-XG 2.67 2.37 42.00
TF-IDF-SE 3.99 3.00 32.81 TF-IDF-SE 3.58 2.00 0.81

TI SPERT 1.37 1.02 78.32 MS SPERT 2.58 2.14 68.83

SBERT-XG 2.10 1.57 51.53 SBERT-XG 3.56 3.21 33.20
TF-IDF-SE 2.53 2.00 30.70 TF-IDF-SE 3.58 3.47 28.41

DC SPERT 1.15 0.64 75.08 XD SPERT 1.38 1.02 71.61

SBERT-XG 2.15 1.90 19.61 SBERT-XG 1.91 1.57 67.23

TF-IDF-SE 0.68 1.00 39.94 TF-IDF-SE 2.01 2.00 20.82
BB SPERT 0.46 0.41 71.25 TD SPERT 2.41 2.18 69.23

SBERT-XG 1.23 1.45 56.32 SBERT-XG 3.63 2.31 48.83

TF-IDF-SE 1.02 1.13 63.84 TF-IDF-SE 5.05 5.00 3.95

CV SPERT 1.68 1.23 81.24 TE SPERT 0.36 0.20 88.71
SBERT-XG 2.51 1.69 75.21 SBERT-XG 1.91 1.72 63.31

TF-IDF-SE 4.04 1.00 44.15 TF-IDF-SE 0.97 1.00 33.95
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The use of transformer-based embeddings allowed SPERT to capture deep se-

mantic relationships within the user stories, leading to more accurate predictions.

This improvement is visualized in Fig. 7, which illustrates the lower error rates of

SPERT compared to traditional NLP-based models across multiple projects.

RQ4: SPERT in Cross project estimation

The cross-project estimation results are presented in Table 5. SPERT demon-

strated superior generalization capabilities compared to the baseline models in all

cross-project scenarios. For example, when trained on the Mesos project and tested

on the Usergrid project, SPERT achieved an MAE of 0.84, while SBERT-XG

recorded an MAE of 1.31.

Figure 8 illustrates the cross-project performance, highlighting that SPERT

consistently achieved lower error rates compared to the baseline models. The A12

e®ect size values, which were consistently above 0.7, further validate the robustness

of SPERT's generalization capabilities, making it suitable for Agile environments

with varying project characteristics.

8.1. Comparative analysis and limitations of SPERT

While SPERT demonstrates superior performance over baseline models, it is es-

sential to acknowledge its limitations and provide a balanced view of its capabilities.

Training Complexity: SPERT's integration of transformer-based embeddings

and RL signi¯cantly increases the complexity of its training process compared to

traditional methods. The multi-stage training pipeline ��� involving ¯ne-tuning

Fig. 7. Performance comparison (MAE) between SPERT and traditional NLP techniques.
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BERT embeddings and optimizing the PPO algorithm ��� requires substantial

computational resources and time. For instance, training SPERT on large datasets

like the ones used in this study can take several hours on high-performance GPUs,

making it less feasible for teams with limited computational capacity.

Table 5. MAE on cross-project estimation and comparison of SPERT and

baselines using Wilcoxon test and A12 e®ect size (in brackets).

Source Target SPERT Baseline Wilcoxon (p-value) E®ect (A12)

(i) Within-repository

ME UG 0.71 1.23 0.001 [0.78]

UG ME 0.68 1.22 0.012 [0.72]

AS AP 1.24 1.90 0.001 [0.74]
AS TI 1.37 2.56 0.001 [0.76]

AP AS 1.19 2.35 0.051 [0.66]

AP TI 1.52 2.80 0.003 [0.60]

MU MS 1.89 3.02 0.041 [0.65]
MS MU 2.14 2.89 0.030 [0.62]

Avg 1.34 2.12 [0.69]

(ii) Cross-repository

AS UG 1.57 2.14 0.004 [0.61]

AS ME 1.78 2.50 0.022 [0.55]

MD AP 4.57 6.10 0.001 [0.60]
MD TI 5.45 7.14 0.097 [0.54]

MD AS 5.70 6.88 0.001 [0.62]

DM TI 2.25 3.89 0.001 [0.64]

UG MS 4.00 4.45 0.005 [0.55]
ME MU 2.68 3.10 0.015 [0.60]

Avg 3.00 4.14 [0.59]

Fig. 8. Cross-project estimation performance of SPERT compared to baseline models.
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Computational Requirements: The use of BERT embeddings and RL

introduces a high computational overhead. During training, SPERT requires

multiple passes through the transformer encoder and iterative updates to the policy

network. Additionally, memory usage is signi¯cantly higher due to the storage of

embedding representations and RL bu®ers, which may limit its applicability in

environments with constrained hardware.

Deployment Challenges: Deploying SPERT in real-world Agile environments

may pose challenges due to its complexity. The model's reliance on RL makes it

sensitive to the quality and consistency of feedback. For example, noisy or biased

project data can adversely a®ect the model's performance, requiring careful pre-

processing and monitoring during deployment.

Comparison with Existing Models: Compared to simpler baseline models like

SBERT-XG or TF-IDF-SE, SPERT o®ers superior accuracy but at the cost of

increased training time and resource usage. For example, while SBERT-XG can

provide reasonably accurate predictions with minimal computational overhead,

SPERT's more sophisticated architecture ensures better generalization across

diverse projects but demands greater e®ort in training and tuning.

9. Conclusion

In this paper, we introduced SPERT, a novel model that leverages transformer-based

embeddings and RL for more accurate and adaptive story point estimation in Agile

software development. Our evaluation demonstrated that SPERT outperforms

traditional ML methods and state-of-the-art deep learning models across multiple

metrics, including MAE, MdAE and SA. The results highlight the strength of

combining semantic text representations through transformers with adaptive

prediction mechanisms via RL, ensuring robust performance even in cross-project

estimation scenarios.

For future work, we plan to explore further enhancements to SPERT by incor-

porating additional contextual features, such as team performance metrics or sprint

velocities, to improve predictive accuracy. Additionally, experimenting with more

advanced RL algorithms and integrating external project management data could

o®er deeper insights into how evolving project dynamics a®ect story point estima-

tion. Last, expanding the model's applicability to di®erent domains beyond software

development may help generalize SPERT's utility in broader project management

contexts.
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